Home
Class 12
MATHS
lim(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(...

`lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n))` is equal to

A

`2+2sqrt(2)`

B

`2sqrt(2)-2`

C

`2sqrt(2)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{n} + \frac{1}{\sqrt{n^2+n}} + \frac{1}{\sqrt{n^2+2n}} + \ldots + \frac{1}{\sqrt{n^2+(n-1)n}} \right), \] we can break it down step by step. ### Step 1: Rewrite the Expression We start by rewriting the limit expression in a more manageable form. Notice that each term in the sum can be expressed as: \[ \frac{1}{\sqrt{n^2 + kn}} = \frac{1}{n\sqrt{1 + \frac{k}{n}}} \quad \text{for } k = 1, 2, \ldots, n-1. \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \left( \frac{1}{n} + \sum_{k=1}^{n-1} \frac{1}{n\sqrt{1 + \frac{k}{n}}} \right). \] ### Step 2: Factor Out \(\frac{1}{n}\) Now, factor out \(\frac{1}{n}\): \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \sum_{k=1}^{n-1} \frac{1}{\sqrt{1 + \frac{k}{n}}} \right). \] ### Step 3: Convert the Sum to an Integral As \(n\) approaches infinity, the sum can be approximated by an integral. The term \(\frac{1}{n}\) can be interpreted as \(dx\) where \(x = \frac{k}{n}\). Hence, the sum becomes: \[ \sum_{k=1}^{n-1} \frac{1}{\sqrt{1 + \frac{k}{n}}} \approx n \int_0^1 \frac{1}{\sqrt{1+x}} \, dx. \] ### Step 4: Evaluate the Integral Now we need to evaluate the integral: \[ \int_0^1 \frac{1}{\sqrt{1+x}} \, dx. \] Using the substitution \(u = 1 + x\), we have \(du = dx\) and the limits change from \(x=0\) to \(x=1\) which corresponds to \(u=1\) to \(u=2\): \[ \int_1^2 \frac{1}{\sqrt{u}} \, du = [2\sqrt{u}]_1^2 = 2\sqrt{2} - 2. \] ### Step 5: Combine Results Now substituting back into our limit expression: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + n \cdot (2\sqrt{2} - 2) \right) = \lim_{n \to \infty} \left( \frac{1}{n} + 2\sqrt{2} - 2 \right) = 2\sqrt{2} - 2. \] ### Final Result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{1}{n} + \frac{1}{\sqrt{n^2+n}} + \frac{1}{\sqrt{n^2+2n}} + \ldots + \frac{1}{\sqrt{n^2+(n-1)n}} \right) = 2\sqrt{2} - 2. \]

To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{n} + \frac{1}{\sqrt{n^2+n}} + \frac{1}{\sqrt{n^2+2n}} + \ldots + \frac{1}{\sqrt{n^2+(n-1)n}} \right), \] we can break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 15

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos
  • PRACTICE SET 17

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+...+n sqrt(n^(2)+n^(2))) is equal to

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

Find lim_(n rarr oo)S_(n); if S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+......+(1)/(sqrt(3n^(2)+2n-1))

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 16-Paper - 2 (MATHEMATICS )
  1. The solution of the differential equation (e^(-2 sqrt(x))-(y)/(sqrt(x...

    Text Solution

    |

  2. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  3. lim(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n...

    Text Solution

    |

  4. The area bounded by y = sin^(-1)x,x=(1)/(sqrt(2)) and X-axis is

    Text Solution

    |

  5. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  6. If the slope of one of the lines given by ax^(2)+2hxy+by^(2)=0 is 5 ti...

    Text Solution

    |

  7. The derivative of f(x)=3|2+x| at the point x0=-3 is

    Text Solution

    |

  8. The curve given by x + y = e^(xy) has a tangent parallel to the y-axis...

    Text Solution

    |

  9. Switching function of the network is

    Text Solution

    |

  10. Let p be the proposition that Mathematics is interesting and q be the ...

    Text Solution

    |

  11. The equation to a pair of opposite sides of a parallelogram are x^2-5x...

    Text Solution

    |

  12. In the adjoining circuit, the output s is

    Text Solution

    |

  13. The slope of tangent at (x,y) to a curve passing through (2, 1) is (x...

    Text Solution

    |

  14. The value of the integral int3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

    Text Solution

    |

  15. Find the probability that a leap year will have 53 Friday or 53 Sat...

    Text Solution

    |

  16. The function f(x)=x/2+2/x has a local minimum at x=2 (b) x=-2 x=0 (...

    Text Solution

    |

  17. Two person A and B take turns in throwing a pair of dice. The first pe...

    Text Solution

    |

  18. The dr. of normal to the plane through (1,0,0), (0,1,0) which makes an...

    Text Solution

    |

  19. If twice the 11th term of an AP is equal to 7 times its 21st term, the...

    Text Solution

    |

  20. if a G.P (p+q)th term = m and (p-q) th term = n , then find its p th t...

    Text Solution

    |