Home
Class 12
MATHS
The equations 2x-3y+6z=4, 5x+7y-14z=1 3x...

The equations `2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0,` have

A

unique solution

B

no solution

C

infinitely many solutions

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the solutions for the given system of equations: 1. **Write the system of equations**: \[ \begin{align*} 2x - 3y + 6z &= 4 \quad \text{(1)} \\ 5x + 7y - 14z &= 1 \quad \text{(2)} \\ 3x + 2y - 4z &= 0 \quad \text{(3)} \end{align*} \] 2. **Form the coefficient matrix \(A\)** and the constant matrix \(B\)**: \[ A = \begin{bmatrix} 2 & -3 & 6 \\ 5 & 7 & -14 \\ 3 & 2 & -4 \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} \] 3. **Calculate the determinant of matrix \(A\)**: \[ \text{det}(A) = 2 \begin{vmatrix} 7 & -14 \\ 2 & -4 \end{vmatrix} - (-3) \begin{vmatrix} 5 & -14 \\ 3 & -4 \end{vmatrix} + 6 \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix} \] - Calculate the minors: \[ \begin{vmatrix} 7 & -14 \\ 2 & -4 \end{vmatrix} = (7)(-4) - (-14)(2) = -28 + 28 = 0 \] \[ \begin{vmatrix} 5 & -14 \\ 3 & -4 \end{vmatrix} = (5)(-4) - (-14)(3) = -20 + 42 = 22 \] \[ \begin{vmatrix} 5 & 7 \\ 3 & 2 \end{vmatrix} = (5)(2) - (7)(3) = 10 - 21 = -11 \] - Substitute back into the determinant formula: \[ \text{det}(A) = 2(0) + 3(22) + 6(-11) = 0 + 66 - 66 = 0 \] 4. **Interpret the determinant**: Since \(\text{det}(A) = 0\), the system of equations is either inconsistent or has infinitely many solutions. 5. **Check for consistency**: We can use the augmented matrix \([A|B]\) and perform row operations to check for consistency: \[ \begin{bmatrix} 2 & -3 & 6 & | & 4 \\ 5 & 7 & -14 & | & 1 \\ 3 & 2 & -4 & | & 0 \end{bmatrix} \] - Perform row operations to reduce this matrix to row echelon form. 6. **Row operations**: - Multiply Row 1 by \( \frac{1}{2} \): \[ \begin{bmatrix} 1 & -\frac{3}{2} & 3 & | & 2 \\ 5 & 7 & -14 & | & 1 \\ 3 & 2 & -4 & | & 0 \end{bmatrix} \] - Replace Row 2 with Row 2 - 5 * Row 1: \[ \begin{bmatrix} 1 & -\frac{3}{2} & 3 & | & 2 \\ 0 & \frac{43}{2} & -29 & | & -9 \\ 3 & 2 & -4 & | & 0 \end{bmatrix} \] - Replace Row 3 with Row 3 - 3 * Row 1: \[ \begin{bmatrix} 1 & -\frac{3}{2} & 3 & | & 2 \\ 0 & \frac{43}{2} & -29 & | & -9 \\ 0 & \frac{11}{2} & -13 & | & -6 \end{bmatrix} \] 7. **Continue row reduction** to check for contradictions or free variables. 8. **Conclusion**: If there are no contradictions, the system has infinitely many solutions. If a row leads to a contradiction (like \(0 = k\) where \(k \neq 0\)), then the system is inconsistent.

To determine the nature of the solutions for the given system of equations: 1. **Write the system of equations**: \[ \begin{align*} 2x - 3y + 6z &= 4 \quad \text{(1)} \\ 5x + 7y - 14z &= 1 \quad \text{(2)} \\ 3x + 2y - 4z &= 0 \quad \text{(3)} ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 17

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos
  • PRACTICE SET 19

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3 are

The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=1 are

The equations x+2y+3z=1 2x+y+3z=1 5x+5y+9z=4

Consider the system of equations x-3y+z=-1 , 2x+y-4z=-1 , 6x-7y+8z=7

The system of equations x+2y +3z =4, 2x+3y+4z=5,3x+4y+5z=6 has

Solve the system of equations x+3y -2z =0, 2x-y+4z =0 ,x-11y+14z =0

The system of equations 6x+5y+ lamda z= 0, 3z-y+4z= 0, x+2y-3z=0 has non-trivial solutions for

A solution set of the equations x-3y-8z+10=0,3x+y-4z=0,2x+5y+6z=13,is-

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 18-PAPER 2 (MATHEMATICS)
  1. Find the differential equation of all parabolas whose axes are paralle...

    Text Solution

    |

  2. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b ,t h...

    Text Solution

    |

  3. If p to (qvvr) is false, then the truth values of p,q, and r are, res...

    Text Solution

    |

  4. Which of the following is not a proposition ?

    Text Solution

    |

  5. The maximum value of Z = 4x + 2y subject to the constraints 2x+3y le ...

    Text Solution

    |

  6. If |a|lt1|b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))...

    Text Solution

    |

  7. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  8. The probability that in the toss of two dice, we obtain the sum 7 or 1...

    Text Solution

    |

  9. int(x^(e-1)+e^(x-1))/(x^(e)+e^(x)) dx is equal to

    Text Solution

    |

  10. The area of the quadrilateral formed by the tangents at the end points...

    Text Solution

    |

  11. lim(n to oo) ((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

    Text Solution

    |

  12. lim(x to 0)((x)/(sqrt(1+x)-sqrt(1-x))) is equal to

    Text Solution

    |

  13. The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

    Text Solution

    |

  14. The equation of the plane containing the two lines (x-1)/2=(y+1)/(-1...

    Text Solution

    |

  15. If 2 tan ^(-1)(cos x )=tan ^(-1)(2 cosec x), then the value of x is

    Text Solution

    |

  16. The value of int(2x+2)/((x-2)^(2)(x-3))dx is

    Text Solution

    |

  17. Find the intervals in which the function f(x)=log(1+x)-(2x)/(2+x) is i...

    Text Solution

    |

  18. The equation to the perpendicular from the point (alpha, beta gamma) t...

    Text Solution

    |

  19. The solution of the differential equation (dy)/(dx)-y tan x=e^(x)sec x...

    Text Solution

    |

  20. The value of int (0)^(pi//2)(sin ^(2)x-cos ^(2)x)/(sin ^(3)x+cos^(3)x...

    Text Solution

    |