Home
Class 12
MATHS
The value of int(3)^(5)(x^(2))/(x^(2)-4)...

The value of `int_(3)^(5)(x^(2))/(x^(2)-4)` dx is

A

`2-"log"_(e)((15)/(7))`

B

`2+"log"_(e)((15)/(7))`

C

`2+4" log"_(e)3-4" log"_(e)7+4" log"_(e)5`

D

`2-tan^(-1)((15)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{3}^{5} \frac{x^2}{x^2 - 4} \, dx \), we can follow these steps: ### Step 1: Simplify the Integrand We start by rewriting the integrand: \[ \frac{x^2}{x^2 - 4} = 1 + \frac{4}{x^2 - 4} \] This is done by performing polynomial long division. ### Step 2: Set Up the Integral Now we can express the integral as: \[ \int_{3}^{5} \left( 1 + \frac{4}{x^2 - 4} \right) \, dx \] This can be split into two separate integrals: \[ \int_{3}^{5} 1 \, dx + \int_{3}^{5} \frac{4}{x^2 - 4} \, dx \] ### Step 3: Evaluate the First Integral The first integral is straightforward: \[ \int_{3}^{5} 1 \, dx = [x]_{3}^{5} = 5 - 3 = 2 \] ### Step 4: Evaluate the Second Integral For the second integral, we can simplify it further: \[ \int_{3}^{5} \frac{4}{x^2 - 4} \, dx = 4 \int_{3}^{5} \frac{1}{(x-2)(x+2)} \, dx \] Using partial fraction decomposition, we can write: \[ \frac{1}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2} \] Solving for \(A\) and \(B\), we find: \[ 1 = A(x+2) + B(x-2) \] Setting \(x = 2\) gives \(A = \frac{1}{4}\) and setting \(x = -2\) gives \(B = -\frac{1}{4}\). Thus: \[ \frac{1}{(x-2)(x+2)} = \frac{1/4}{x-2} - \frac{1/4}{x+2} \] So the integral becomes: \[ 4 \int_{3}^{5} \left( \frac{1/4}{x-2} - \frac{1/4}{x+2} \right) \, dx = \int_{3}^{5} \left( \frac{1}{x-2} - \frac{1}{x+2} \right) \, dx \] ### Step 5: Evaluate the Integral Now we can evaluate: \[ \int_{3}^{5} \frac{1}{x-2} \, dx - \int_{3}^{5} \frac{1}{x+2} \, dx \] Calculating these integrals gives: \[ \left[ \log |x-2| \right]_{3}^{5} - \left[ \log |x+2| \right]_{3}^{5} \] Calculating the limits: \[ \left( \log(5-2) - \log(3-2) \right) - \left( \log(5+2) - \log(3+2) \right) = \left( \log(3) - \log(1) \right) - \left( \log(7) - \log(5) \right) \] This simplifies to: \[ \log(3) - \log(7) + \log(5) = \log\left(\frac{15}{7}\right) \] ### Step 6: Combine Results Now we combine the results from both integrals: \[ 2 + \log\left(\frac{15}{7}\right) \] ### Final Answer Thus, the value of the integral \( \int_{3}^{5} \frac{x^2}{x^2 - 4} \, dx \) is: \[ \boxed{2 + \log\left(\frac{15}{7}\right)} \]

To solve the integral \( \int_{3}^{5} \frac{x^2}{x^2 - 4} \, dx \), we can follow these steps: ### Step 1: Simplify the Integrand We start by rewriting the integrand: \[ \frac{x^2}{x^2 - 4} = 1 + \frac{4}{x^2 - 4} \] This is done by performing polynomial long division. ...
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 18

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos
  • PRACTICE SET 20

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (Mathematics)|49 Videos

Similar Questions

Explore conceptually related problems

int_(3)^(5)(x^(2)dx)/(x^(2)-4)

The value of int_(2)^(3)(x-2)^(5)(3-x)^(6)dx is

int (x^(3) +5x^(2) -4)/(x^(2)) dx

The value of int(dx)/((x+2)(x+3))

The value of int_(0)^(1)4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx is

The value of int_(0)^(1) 4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx is

The value of int (dx)/(x^(4)+5x^(2)+4) is

The value of int_(-2)^(3)(|x|)/(x)dx is (a) 5 (b) 2 (c) -2 (d) 3

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 19-Paper 2 (Mathematics)
  1. If f(t) is an odd function, then varphi(x)=inta^xf(t)dx is an even fun...

    Text Solution

    |

  2. If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , ...

    Text Solution

    |

  3. The value of int(3)^(5)(x^(2))/(x^(2)-4) dx is

    Text Solution

    |

  4. The plane 2x+3y+4z=1 meets the coordinate axis in A, B, C. The centroi...

    Text Solution

    |

  5. The equation of straight line equally inclined to the axes and equidis...

    Text Solution

    |

  6. Let P(-1,0), Q(0,0),R(3,3sqrt(3)) be three points then the equation of...

    Text Solution

    |

  7. Let A and B be sets. If AnnX=BnnX=phi and AuuX=BuuX for some set X the...

    Text Solution

    |

  8. Let R={(3,3),(6,6),(9,9),(12,12),(6,12),(3,9(,(3,12),(3,6)} be relatio...

    Text Solution

    |

  9. The first four terms of an AP are a, 9, 3a- b, 3a+b. The 2011 th ter...

    Text Solution

    |

  10. The shortest distance between the straight lines (x-6)/(1)=(2-y)/(2)...

    Text Solution

    |

  11. An urn contains 4 white and 3 red balls. Three balls are drawn with re...

    Text Solution

    |

  12. Two aeroplanes I and II bomb a target in succession. The probabilit...

    Text Solution

    |

  13. If y="log"(2)"log"(2)(x), then (dy)/(dx) is equal to

    Text Solution

    |

  14. If A=[(1,2,-1),(-1,1,2),(2,-1,1)], then det (adj(adj A) is

    Text Solution

    |

  15. Dual of x ^^(y vv x)=x is

    Text Solution

    |

  16. If given constraints are 5x+4y ge2, x le6, y le 7, then the maximum va...

    Text Solution

    |

  17. The angle between the pair of straight lines y^(2)sin^(2)theta-xy sin^...

    Text Solution

    |

  18. The normal to the curve x=a(cos theta + theta sin theta), y=a(sin thet...

    Text Solution

    |

  19. If f(x)={(x^(alpha)logx , x > 0),(0, x=0):} and Rolle's theorem is ap...

    Text Solution

    |

  20. if the line xcosalpha+ysinalpha=p is normal to the ellipse x^2/a^2+y^2...

    Text Solution

    |