Home
Class 12
MATHS
If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t...

If `x=(1-t^(2))/(1+t^(2))` and `y=(2t)/(1+t^(2))`, then `(dy)/(dx)` is equal to

A

`-(y)/(x)`

B

`(y)/(x)`

C

`-(x)/(y)`

D

`(x)/(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2t}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{1 - t^2}{1 + t^2} \] Using the quotient rule, where if \(u = 1 - t^2\) and \(v = 1 + t^2\), then: \[ \frac{dx}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating the derivatives: - \(\frac{du}{dt} = -2t\) - \(\frac{dv}{dt} = 2t\) Now substituting: \[ \frac{dx}{dt} = \frac{(1 + t^2)(-2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] \[ = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} \] \[ = \frac{-4t}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{2t}{1 + t^2} \] Using the quotient rule again: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2) - (2t)(2t)}{(1 + t^2)^2} \] \[ = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} \] \[ = \frac{2 - 2t^2}{(1 + t^2)^2} \] \[ = \frac{2(1 - t^2)}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{2(1 - t^2)}{(1 + t^2)^2}}{\frac{-4t}{(1 + t^2)^2}} \] The \((1 + t^2)^2\) cancels out: \[ = \frac{2(1 - t^2)}{-4t} \] \[ = \frac{-(1 - t^2)}{2t} \] ### Step 4: Express in terms of \(x\) and \(y\) Recall: \[ x = \frac{1 - t^2}{1 + t^2} \quad \Rightarrow \quad 1 - t^2 = x(1 + t^2) \] Thus: \[ 1 - t^2 = x + xt^2 \] Rearranging gives: \[ t^2(1 + x) = 1 - x \quad \Rightarrow \quad t^2 = \frac{1 - x}{1 + x} \] Substituting \(t^2\) into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-(1 - t^2)}{2t} = \frac{-(x + xt^2)}{2t} \] Using \(y = \frac{2t}{1 + t^2}\): \[ t = \frac{y(1 + t^2)}{2} \] Thus: \[ \frac{dy}{dx} = -\frac{x}{y} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{x}{y} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 21

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos
  • PRACTICE SET 23

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper-2(MATHEMATICS)|50 Videos

Similar Questions

Explore conceptually related problems

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) What is (dy)/(dx) equal to ?

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 22 -Mathematics
  1. The point (5,-7) lies outside the circle

    Text Solution

    |

  2. If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), then (dy)/(dx) is equal...

    Text Solution

    |

  3. A vector perpendicular to both of the vectors hati+hatj+hatk and hat...

    Text Solution

    |

  4. In an ellipse length of minor axis is 8 and eccentricity is (sqrt(5))/...

    Text Solution

    |

  5. The integrating factor of the differential equation (1-x^(2))(dy)/(d...

    Text Solution

    |

  6. The inverse of the statement (p ^^ ~ q) -> r is

    Text Solution

    |

  7. For the matrix A=[{:(1,1,0),(1,2,1),(2,1,0):}], which of the following...

    Text Solution

    |

  8. One of the diameter of the circle x^(2)+y^(2)-2x+4y-4=0, is

    Text Solution

    |

  9. The angle between the straight lines (x+1)/(2)=(y-2)/(5)=(z+3)/(4) ...

    Text Solution

    |

  10. Minimize z=Sigma(j=1)^(n)Sigma+(i=1)^(m)C(ij)X(ij)subject to Sigma(j=1...

    Text Solution

    |

  11. For the function f(x)=(log(e)(1+x)+log(e)(1-x))/(x) to be continuous a...

    Text Solution

    |

  12. The rate of change of surface area of a sphere of radius r when the ra...

    Text Solution

    |

  13. If y=sqrt(x+sqrt(x+sqrt(x+ tooo))) , then (dy)/(dx) is equal to.....

    Text Solution

    |

  14. int(0)^(2pi) (sin x-|sin x|) dx equal to

    Text Solution

    |

  15. The solution of the differential equation (sin x + cos x) dy + (cos x-...

    Text Solution

    |

  16. Locus of the point of intersection of perpendicular tangents to the ci...

    Text Solution

    |

  17. In a Boolean Algebra B, for all x in B, x+1 is equal to

    Text Solution

    |

  18. A normal is drawn at a point P(x, y) of a curve lt meets the x-axis at...

    Text Solution

    |

  19. The total area enclosed by the lines y=|x|,y=0 and |x|=1 is

    Text Solution

    |

  20. intsqrt((x)/(a^(3)-x^(3))) dx is equal to

    Text Solution

    |