Home
Class 12
MATHS
Let X=[{:(x(1)),(x(2)),(x(3)):}],A=[{:(1...

Let `X=[{:(x_(1)),(x_(2)),(x_(3)):}],A=[{:(1,-1,2),(2,0,1),(3,2,1):}]` and `B=[{:(3),(1),(4):}]`.If AX=B, then X is equal to

A

`[{:(1),(2),(3):}]`

B

`[{:(-1),(-2),(3):}]`

C

`[{:(-1),(-2),(-3):}]`

D

`[{:(-1),(2),(3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( AX = B \) for \( X \), we will follow these steps: ### Step 1: Write down the matrices Given: - \( A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{pmatrix} \) - \( B = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \) ### Step 2: Find the inverse of matrix \( A \) To find \( X \), we need to calculate \( A^{-1} \) and then multiply it by \( B \): \[ X = A^{-1}B \] ### Step 3: Calculate the determinant of \( A \) The determinant of \( A \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (0 \cdot 1 - 1 \cdot 2) - (-1) \cdot (2 \cdot 1 - 1 \cdot 3) + 2 \cdot (2 \cdot 2 - 0 \cdot 3) \] Calculating each term: \[ = 1 \cdot (0 - 2) + 1 \cdot (2 - 3) + 2 \cdot (4 - 0) \] \[ = -2 + (-1) + 8 = 5 \] ### Step 4: Find the adjoint of \( A \) To find the adjoint, we need to calculate the cofactor matrix and then take the transpose. The cofactor \( C_{ij} \) is calculated as: \[ C_{ij} = (-1)^{i+j} M_{ij} \] where \( M_{ij} \) is the minor of element \( a_{ij} \). Calculating the minors and cofactors: 1. For \( a_{11} = 1 \): Minor = \( \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = 0 \cdot 1 - 1 \cdot 2 = -2 \) → Cofactor = \( -2 \) 2. For \( a_{12} = -1 \): Minor = \( \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = 2 \cdot 1 - 1 \cdot 3 = -1 \) → Cofactor = \( 1 \) 3. For \( a_{13} = 2 \): Minor = \( \begin{vmatrix} 2 & 0 \\ 3 & 2 \end{vmatrix} = 2 \cdot 2 - 0 \cdot 3 = 4 \) → Cofactor = \( 4 \) 4. For \( a_{21} = 2 \): Minor = \( \begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} = -1 \cdot 1 - 2 \cdot 2 = -5 \) → Cofactor = \( 5 \) 5. For \( a_{22} = 0 \): Minor = \( \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 3 = -5 \) → Cofactor = \( 0 \) 6. For \( a_{23} = 1 \): Minor = \( \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} = 1 \cdot 2 - (-1) \cdot 3 = 5 \) → Cofactor = \( 5 \) 7. For \( a_{31} = 3 \): Minor = \( \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -1 \cdot 1 - 2 \cdot 0 = -1 \) → Cofactor = \( -1 \) 8. For \( a_{32} = 2 \): Minor = \( \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 2 = -3 \) → Cofactor = \( 3 \) 9. For \( a_{33} = 1 \): Minor = \( \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} = 1 \cdot 0 - (-1) \cdot 2 = 2 \) → Cofactor = \( 2 \) The cofactor matrix is: \[ C = \begin{pmatrix} -2 & 1 & 4 \\ 5 & 0 & 5 \\ -1 & 3 & 2 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -2 & 5 & -1 \\ 1 & 0 & 3 \\ 4 & 5 & 2 \end{pmatrix} \] ### Step 5: Calculate the inverse of \( A \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] Thus: \[ A^{-1} = \frac{1}{5} \begin{pmatrix} -2 & 5 & -1 \\ 1 & 0 & 3 \\ 4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} & 1 & -\frac{1}{5} \\ \frac{1}{5} & 0 & \frac{3}{5} \\ \frac{4}{5} & 1 & \frac{2}{5} \end{pmatrix} \] ### Step 6: Multiply \( A^{-1} \) by \( B \) Now we multiply \( A^{-1} \) by \( B \): \[ X = A^{-1}B = \begin{pmatrix} -\frac{2}{5} & 1 & -\frac{1}{5} \\ \frac{1}{5} & 0 & \frac{3}{5} \\ \frac{4}{5} & 1 & \frac{2}{5} \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \] Calculating each element: 1. First row: \[ -\frac{2}{5} \cdot 3 + 1 \cdot 1 - \frac{1}{5} \cdot 4 = -\frac{6}{5} + 1 - \frac{4}{5} = -\frac{10}{5} + 1 = -2 + 1 = -1 \] 2. Second row: \[ \frac{1}{5} \cdot 3 + 0 \cdot 1 + \frac{3}{5} \cdot 4 = \frac{3}{5} + 0 + \frac{12}{5} = \frac{15}{5} = 3 \] 3. Third row: \[ \frac{4}{5} \cdot 3 + 1 \cdot 1 + \frac{2}{5} \cdot 4 = \frac{12}{5} + 1 + \frac{8}{5} = \frac{12}{5} + \frac{5}{5} + \frac{8}{5} = \frac{25}{5} = 5 \] Thus, we have: \[ X = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \] ### Final Answer The solution for \( X \) is: \[ X = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE SET 21

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos
  • PRACTICE SET 23

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper-2(MATHEMATICS)|50 Videos

Similar Questions

Explore conceptually related problems

If A={:((1,-3,4),(2,1,-2)):},B={:((-2,-4,5),(1,-1,3)):} and 5A-3B+2X=O, then X=

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

Suppose the vectors x_(1), x_(2) and x_(3) are the solutions of the system of linear equations, Ax=b when the vector b on the right side is equal to b_(1), b_(2) and b_(3) respectively. If x_(1)=[(1),(1),(1)], x_(2)=[(0),(2),(1)], x_(3)=[(0),(0),(1)], b_(1)=[(1),(0),(0)], b_(2)=[(0),(2),(0)] and b_(3)=[(0),(0),(2)] , then the determinant of A is equal to :

Let x=[x_1x_2x_3],A=[1-1 2 2 0 1 3 2 1]a n dB=[3 2 1]dotIfA X=B , Then X is equal to [1 2 3] (b) [-1-2-3] (c) [-1-2-3] (d) [-1 2 3] (e) [0 2 1]

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-PRACTICE SET 22 -Mathematics
  1. What is the value of (d+a).[axx{bxx(cxxd)}]?

    Text Solution

    |

  2. Let Tr be the r^(th) term of an A.P whose first term is a and common d...

    Text Solution

    |

  3. Let X=[{:(x(1)),(x(2)),(x(3)):}],A=[{:(1,-1,2),(2,0,1),(3,2,1):}] and ...

    Text Solution

    |

  4. Which of the following is a statement ?

    Text Solution

    |

  5. A line passes through the point (2,2) and is perpendicular to the lin...

    Text Solution

    |

  6. The angle of intersection between the curves x^(2) = 4(y +1) and x^(2)...

    Text Solution

    |

  7. If the sum of first n natural numbers is (1)/(78) times the sum of the...

    Text Solution

    |

  8. The locus of the foot of the perpendicular from the foci an any tangen...

    Text Solution

    |

  9. The feasible for the following constraints L(1) le 0, L(2) ge 0, L(3)=...

    Text Solution

    |

  10. The value of lim(x to 1) (x^(7)-2x^(5)+1)/(x^(3)-3x^(2)+2) is

    Text Solution

    |

  11. For the function y=x+(1)/(x)

    Text Solution

    |

  12. The derivative of f(x) =int(x^2)^(x^3)1/(loge(t))dt,(x>0), is

    Text Solution

    |

  13. In a certain twon, 25% families own a cell phone, 15% families own a s...

    Text Solution

    |

  14. If A={1,2,3,4,5}, then find the domain in the relation from A to A by ...

    Text Solution

    |

  15. If x^(y)=e^(x-y), then (dy)/(dx) is equal to

    Text Solution

    |

  16. In Boolean Algebra, the unit element '1'

    Text Solution

    |

  17. If A=[(1,1),(1,1)] ,then A^(100) is equal to

    Text Solution

    |

  18. The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

    Text Solution

    |

  19. The minimum value of 2^(x^2-3)^(3+27) is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  20. If f(2)=2 and f'(2)=1, and then lim(x to 2) (2x^(2)-4f(x))/(x-2) is eq...

    Text Solution

    |