Home
Class 12
MATHS
If a1,a,a3...an are in A.P then prove th...

If `a_1,a_,a_3...a_n` are in A.P then prove that `a_1^2-a_2^2+a_3^2-a_4^2+....a_(2k-1)^2-a_(2k)^2= (k/(2k-1))(a_1^2-a_(2k)^2)`

A

` k/(2k-1)(a_(1)^(2) - a_(2k)^(2))`

B

` (2k)/(k-1)(a_(2k)^(2)-a_(1)^(2))`

C

` k/(k+1)(a_(1)^(2)-a_(2k)^(2))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
a

Since `a_(1),a_(2),….,a_(n)` are in AP, therefore
`a_(2)-a_(1)=a_(3)-a_(2)=...=a_(2k)-a_(2k-1)=d`
Now, ` a_(1)^(2)-a_(2)^(2)=(a_(1)-a_(2))(a_(1)+a_(2))=-d(a_(1)+a_(2))`
` a_(3)^(2) - a_(4)^(2)= d (a_(3) +a_(4))`
` a_(2k-1)^(2)-a_(2k)^(2)=d (a_(2k-1)+a_(2k))`
On adding above equations , we get
` S = -d (a_(1)+a_(2)+...+a_(2k))=-d [(2k)/2 (a_(1)+a_(2k))]`
` = - dk(a_(1)+a_(2k))=(-dk)/((a_(1)-a_(2k)))(a_(1)^(2)=a_(2k)^(2))`
`+(a_(2k-2)-a_(2k-1))+(a_(2k-1)-a_(2k))]`
` = k/(2k-1) (a_(1)^(2)- a_(2k)^(2))`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 4|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 5|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If a_1,a_2,……….,a_(n+1) are in A.P. prove that sum_(k=0)^n ^nC_k.a_(k+1)=2^(n-1)(a_1+a_(n+1))

If a_i>0, i=1, 2, 3,..., n then prove that a_1/a_2+a_2/a_3+a_3/a_4+...+a_(n-1)/a_n+a_n/a_1gen .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-SEQUENCES AND SERIES -EXERCISE 3
  1. If a1,a,a3...an are in A.P then prove that a1^2-a2^2+a3^2-a4^2+....a(2...

    Text Solution

    |