Home
Class 12
MATHS
If secxcos5x+1=0 , where 0ltxle(pi)/(2)...

If `secxcos5x+1=0 `, where `0ltxle(pi)/(2)`, then find the value of x.

A

`(pi)/(5),(pi)/(4)`

B

`(pi)/(5)`

C

`(pi)/(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`secxcos5x=-1`
`rArrcos5x=-cosx`
`rArr5x=2npi+-(pi-x)`
`rArrx=((2n+1)pi)/(6)or((2n-1)pi)/(4)`
The possible values of x which lies in the interval `(0,2pi)` are
`(pi)/(6),(pi)/(4),(pi)/(2),(3pi)/(4),(5pi)/(6),(5pi)/(4),(7pi)/(6),(7pi)/(4),(9pi)/(6)and(11pi)/(6)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

If sec x cos5x+1=0, where 0

Solve that following equations: sec x cos5x+1=0,0

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

Given that x+sin y=2008,cos y+x=2007, where 0<=y<=(pi)/(2). Find the value of x+y

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

Given that 3sin x+4cos x=5 where xin(0,(pi)/(2)) Find the value of 2sin x+cos x+4tan x

Let f(x)=(1-tan x)/(4x-pi),x!=(pi)/(4),x in[0,(pi)/(2)], If f(x) is continuous in [0,(pi)/(4)], then find the value of f((pi)/(4))

If there exists at least one real x which satisfies both the equatios x^(2)+2xsiny+1=0 , where yin(0,pi//2),andax^(2)+x+1=0 , then the value of a+siny is ______.