Home
Class 12
MATHS
If n is any integer ,then the general so...

If n is any integer ,then the general solution of the quation `costheta-sintheta=(1)/(sqrt(2))` is

A

`theta=2npi-(pi)/(12)ortheta=2npi+(7pi)/(12)`

B

`theta=npi+(pi)/(12)ortheta=2npi+(7pi)/(12)`

C

`theta=npi+(pi)/(12)`

D

`theta=2npi+(pi)/(12)ortheta=2npi+(7pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta - \sin \theta = \frac{1}{\sqrt{2}} \), we will follow these steps: ### Step 1: Multiply both sides by \( \frac{1}{\sqrt{2}} \) We start with the equation: \[ \cos \theta - \sin \theta = \frac{1}{\sqrt{2}} \] Multiply both sides by \( \frac{1}{\sqrt{2}} \): \[ \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta = \frac{1}{2} \] ### Step 2: Rewrite using trigonometric identities We know that \( \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} = \sin \frac{\pi}{4} \). Thus, we can rewrite the left side: \[ \cos \frac{\pi}{4} \cos \theta - \sin \frac{\pi}{4} \sin \theta = \frac{1}{2} \] This can be expressed using the cosine of a sum formula: \[ \cos \left( \theta + \frac{\pi}{4} \right) = \frac{1}{2} \] ### Step 3: Solve for \( \theta + \frac{\pi}{4} \) The general solution for \( \cos x = \frac{1}{2} \) is: \[ x = 2n\pi \pm \frac{\pi}{3}, \quad n \in \mathbb{Z} \] Substituting \( x = \theta + \frac{\pi}{4} \): \[ \theta + \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3} \] ### Step 4: Isolate \( \theta \) Now, we isolate \( \theta \): \[ \theta = 2n\pi \pm \frac{\pi}{3} - \frac{\pi}{4} \] ### Step 5: Simplify the expression To combine the fractions, we need a common denominator. The least common multiple of 3 and 4 is 12: \[ \theta = 2n\pi \pm \left( \frac{4\pi}{12} \pm \frac{3\pi}{12} \right) \] \[ \theta = 2n\pi \pm \frac{7\pi}{12} \quad \text{or} \quad 2n\pi \pm \frac{\pi}{12} \] ### Final General Solution Thus, the general solutions for \( \theta \) are: \[ \theta = 2n\pi + \frac{7\pi}{12} \quad \text{or} \quad \theta = 2n\pi - \frac{7\pi}{12} \]

To solve the equation \( \cos \theta - \sin \theta = \frac{1}{\sqrt{2}} \), we will follow these steps: ### Step 1: Multiply both sides by \( \frac{1}{\sqrt{2}} \) We start with the equation: \[ \cos \theta - \sin \theta = \frac{1}{\sqrt{2}} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is any integer, then the general solution of the equation cosx-sinx=(1)/(sqrt(2)) is

If sintheta=costheta then find the general solution of theta

Find the general solution of the equation (sqrt(3)-1)costheta+(sqrt(3)+1)sintheta=2 .

sqrt(3)costheta+sintheta=2

sintheta+costheta=sqrt(2)

General solution of : costheta=1/2

sqrt(3)sintheta-costheta=sqrt(2)

Find the general value of theta from the equation sintheta+costheta=sqrt(2)cosA.