Home
Class 12
MATHS
If P=(1)/(2)sin^(2)theta+(1)/(3)cos^(2)t...

If `P=(1)/(2)sin^(2)theta+(1)/(3)cos^(2)theta`, then

A

`(1)/(3)lePle(1)/(2)`

B

`Pge(1)/(2)`

C

`2lePle3`

D

`-(sqrt(13))/(6)lePle(sqrt(13))/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \( P = \frac{1}{2} \sin^2 \theta + \frac{1}{3} \cos^2 \theta \), we can follow these steps: ### Step 1: Rewrite \( P \) in terms of a single trigonometric function Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into the expression for \( P \): \[ P = \frac{1}{2}(1 - \cos^2 \theta) + \frac{1}{3} \cos^2 \theta \] ### Step 2: Simplify the expression Distributing the terms: \[ P = \frac{1}{2} - \frac{1}{2} \cos^2 \theta + \frac{1}{3} \cos^2 \theta \] Now, combine the terms involving \( \cos^2 \theta \): \[ P = \frac{1}{2} + \left(-\frac{1}{2} + \frac{1}{3}\right) \cos^2 \theta \] ### Step 3: Find a common denominator To combine the coefficients of \( \cos^2 \theta \): \[ -\frac{1}{2} + \frac{1}{3} = -\frac{3}{6} + \frac{2}{6} = -\frac{1}{6} \] Thus, we can rewrite \( P \): \[ P = \frac{1}{2} - \frac{1}{6} \cos^2 \theta \] ### Step 4: Determine the range of \( P \) The term \( \cos^2 \theta \) varies between 0 and 1. Therefore: - When \( \cos^2 \theta = 0 \): \[ P = \frac{1}{2} - \frac{1}{6}(0) = \frac{1}{2} \] - When \( \cos^2 \theta = 1 \): \[ P = \frac{1}{2} - \frac{1}{6}(1) = \frac{1}{2} - \frac{1}{6} = \frac{3}{6} - \frac{1}{6} = \frac{2}{6} = \frac{1}{3} \] ### Step 5: Conclusion about the range Thus, the range of \( P \) is from \( \frac{1}{3} \) to \( \frac{1}{2} \). ### Final Answer: The range of \( P \) is \( \left[\frac{1}{3}, \frac{1}{2}\right] \). ---

To find the range of \( P = \frac{1}{2} \sin^2 \theta + \frac{1}{3} \cos^2 \theta \), we can follow these steps: ### Step 1: Rewrite \( P \) in terms of a single trigonometric function Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into the expression for \( P \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(2)theta_(1)+sin^(2)theta_(2)+sin^(2)theta_(3)+sin^(2)theta_(4)=0 then which of the following cannot be the value of cos theta_(1)+cos theta_(2)+cos theta_(3)+cos theta_(4)

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)

Prove the following 1.((1-cos^(2)theta)/(sin^(2)theta))=12.1-((cos^(2)theta)/(1+sin theta))=sin theta

sin ^ (4) theta + 2sin ^ (2) theta (1- (1) / (cos ec ^ (2) theta)) + cos ^ (4) theta =

If sin theta-cos theta=(1)/(2) and sin^(3)theta-cos^(3)theta=(p)/(q) where p and q are natural numbers with HCF=1, find the value of ((p+q))/(3)

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1