Home
Class 12
MATHS
The root of the equation 1-costheta=sint...

The root of the equation `1-costheta=sintheta*"sin"(theta)/(2)` is

A

`kpi,kinI`

B

`2kpi,kinI`

C

`k(pi)/(2),kinI`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `1-costheta=sintheta*"sin"(theta)/(2)`
`rArr2"sin"^(2)(theta)/(2)=2"sin"(theta)/(2)*"cos"(theta)/(2)*"sin"(theta)/(2)`
`rArr2"sin"^(2)(theta)/(2)[1-"cos"(theta)/(2)]=0`
`rArr"sin"(theta)/(2)=0or2"sin"^(2)(theta)/(4)=0`
`(theta)/(2)=kpior(theta)/(4)=kpi`
Hence , `theta=2kpiortheta=4kpi,kinI`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sin^(5)theta + 1/(sintheta) = 1/(costheta) +cos^(5)theta where theta int (0, pi/2) , is

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

The possible value of theta in [-pi, pi] satisfying the equation 2(costheta + cos 2theta)+ (1+2costheta)sin 2theta = 2sintheta are

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

Solve: costheta+sintheta=cost2theta+sin2theta

If sintheta-costheta=0 , then sin^3theta+cos^3theta=?