Home
Class 12
MATHS
If 2sin^(2)theta+sqrt(3)costheta+1=0, th...

If `2sin^(2)theta+sqrt(3)costheta+1=0`, then the value of `theta` is

A

`(pi)/(6)`

B

`(2pi)/(3)`

C

`(5pi)/(6)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\sin^2\theta + \sqrt{3}\cos\theta + 1 = 0\), we will follow these steps: ### Step 1: Convert \(\sin^2\theta\) to \(\cos\theta\) We know that: \[ \sin^2\theta = 1 - \cos^2\theta \] Substituting this into the equation gives: \[ 2(1 - \cos^2\theta) + \sqrt{3}\cos\theta + 1 = 0 \] This simplifies to: \[ 2 - 2\cos^2\theta + \sqrt{3}\cos\theta + 1 = 0 \] ### Step 2: Rearranging the equation Combine like terms: \[ 3 - 2\cos^2\theta + \sqrt{3}\cos\theta = 0 \] Rearranging gives: \[ -2\cos^2\theta + \sqrt{3}\cos\theta + 3 = 0 \] Multiplying through by -1 to make the leading coefficient positive: \[ 2\cos^2\theta - \sqrt{3}\cos\theta - 3 = 0 \] ### Step 3: Use the quadratic formula This is a quadratic equation in terms of \(\cos\theta\). We can use the quadratic formula: \[ \cos\theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 2\), \(b = -\sqrt{3}\), and \(c = -3\). Plugging in these values: \[ \cos\theta = \frac{\sqrt{3} \pm \sqrt{(-\sqrt{3})^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} \] Calculating the discriminant: \[ \cos\theta = \frac{\sqrt{3} \pm \sqrt{3 + 24}}{4} = \frac{\sqrt{3} \pm \sqrt{27}}{4} = \frac{\sqrt{3} \pm 3\sqrt{3}}{4} \] ### Step 4: Simplifying the solutions This gives us two potential solutions: 1. \(\cos\theta = \frac{\sqrt{3} + 3\sqrt{3}}{4} = \frac{4\sqrt{3}}{4} = \sqrt{3}\) 2. \(\cos\theta = \frac{\sqrt{3} - 3\sqrt{3}}{4} = \frac{-2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2}\) ### Step 5: Analyzing the solutions The first solution, \(\cos\theta = \sqrt{3}\), is not valid since the range of \(\cos\theta\) is \([-1, 1]\). The second solution, \(\cos\theta = -\frac{\sqrt{3}}{2}\), is valid. The angles that satisfy this equation are: \[ \theta = \frac{5\pi}{6} \quad \text{and} \quad \theta = \frac{7\pi}{6} \] ### Final Answer Thus, the value of \(\theta\) is: \[ \theta = \frac{5\pi}{6} \quad \text{(in the range of } [0, 2\pi]\text{)} \]

To solve the equation \(2\sin^2\theta + \sqrt{3}\cos\theta + 1 = 0\), we will follow these steps: ### Step 1: Convert \(\sin^2\theta\) to \(\cos\theta\) We know that: \[ \sin^2\theta = 1 - \cos^2\theta \] Substituting this into the equation gives: ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If sintheta=sqrt(3)costheta,-pi

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?

Knowledge Check

  • If 2 sin^2 theta+sqrt3 cos theta +1 =0 , then the value of theta is

    A
    `pi/6`
    B
    `(2pi)/3`
    C
    `(5pi)/6`
    D
    `pi`
  • lethetale90^(@)and4cos^(2)theta-4sqrt(3)costheta+3=0 then the value of theta is

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `90^(@)`
    D
    `60^(@)`
  • If 0^(@)ltthetalt90^(@)and2sin^(2)theta+3costheta=3 , then the value of theta is

    A
    `30^(@)`
    B
    `60^(@)`
    C
    `45^(@)`
    D
    `75^(@)`
  • Similar Questions

    Explore conceptually related problems

    If sintheta-costheta=1 , then the value of sin^3theta-cos^3theta is __________ .

    Solve sin^(2)theta-costheta=1/4 for theta and write the values of theta in the interval 0 lethetale2pi

    If P sin theta = sqrt(3) and P costheta =1 , then the value of P is:

    If sintheta+costheta=1 , then the value of sin2theta is

    If the equation sin^(2)theta-costheta=(1)/(4), then the value of theta lying in the interval 0lethetale2pi is