Home
Class 12
MATHS
In a DeltaABC, cosecA(sinBcosC+cosBsinC)...

In a `DeltaABC`, cosecA(sinBcosC+cosBsinC)` is equal to

A

`(c)/(a)`

B

`(a)/(c)`

C

1

D

`(c)/(ab)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have ,`cosecA(sinBcosC+cosBsinC)`
`=((sinB)/(sinA)"cos"C+(sinC)/(sinA)"cos"B)`
`=((b)/(a)"cos"C+(c)/(a)"cos"B)=(a)/(a)=1`
`[because a=bcosC+ccisB]`
Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC,cosecA(sinBcosC+cosBsinC)=

In DeltaABC,cosecA(sinBcosC+cosBsinC)=?

In any DeltaABC,sum(cosA)/(bcosC+ccosB) is equal to

In a /_\ABC , cosec A[sinB.cosC+cosB.sinC]= (A) c/a (B) a/c (C) 1 (D) none of these

In a DeltaABC ,a cos^(2)B/2+bcos^(2)A/2 is equal to

In a DeltaABC , the value of sin""(A+B)/(2) is equal to

If (3-tan^2A)/(1-3tan^2A)=K where K is a real number, then cosecA(3sinA-4sin^3A) is equal to

If G is the centroid of a DeltaABC , then GA^(2)+GB^(2)+GC^(2) is equal to

The any DeltaABC under usual notation ,a(bcos C-c cosB) is equal to