Home
Class 12
MATHS
In DeltaABC, if (1)/(b+c)+(1)/(c+a)=(3)...

In `DeltaABC`, if `(1)/(b+c)+(1)/(c+a)=(3)/(a+b+c)`, then C is equal to

A

`90^(@)`

B

`60^(@)`

C

`45^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation for triangle \( \Delta ABC \): \[ \frac{1}{b+c} + \frac{1}{c+a} = \frac{3}{a+b+c} \] ### Step 1: Cross-Multiply We can cross-multiply to eliminate the fractions. This gives us: \[ (a+b+c) \left( \frac{1}{b+c} + \frac{1}{c+a} \right) = 3 \] Expanding the left-hand side: \[ (a+b+c) \cdot \frac{1}{b+c} + (a+b+c) \cdot \frac{1}{c+a} = 3 \] This simplifies to: \[ \frac{a+b+c}{b+c} + \frac{a+b+c}{c+a} = 3 \] ### Step 2: Simplify Each Term Now we can simplify each term: \[ \frac{a}{b+c} + \frac{b+c}{b+c} + \frac{b}{c+a} + \frac{c+a}{c+a} = 3 \] This simplifies to: \[ \frac{a}{b+c} + 1 + \frac{b}{c+a} + 1 = 3 \] So we have: \[ \frac{a}{b+c} + \frac{b}{c+a} + 2 = 3 \] ### Step 3: Rearranging the Equation Rearranging gives us: \[ \frac{a}{b+c} + \frac{b}{c+a} = 1 \] ### Step 4: Finding a Common Denominator To combine the fractions, we find a common denominator: \[ \frac{a(c+a) + b(b+c)}{(b+c)(c+a)} = 1 \] This leads to: \[ a(c+a) + b(b+c) = (b+c)(c+a) \] ### Step 5: Expanding Both Sides Expanding both sides gives us: \[ ac + a^2 + b^2 + bc = bc + c^2 + ab + ac \] ### Step 6: Canceling Terms We can cancel \( ac \) and \( bc \) from both sides: \[ a^2 + b^2 = c^2 + ab \] ### Step 7: Rearranging for the Cosine Rule Rearranging gives us: \[ a^2 + b^2 - c^2 = ab \] ### Step 8: Applying the Cosine Rule By the cosine rule, we know: \[ c^2 = a^2 + b^2 - 2ab \cos C \] Setting the two equations equal gives: \[ ab = 2ab \cos C \] ### Step 9: Solving for Cosine Dividing both sides by \( ab \) (assuming \( ab \neq 0 \)): \[ 1 = 2 \cos C \] Thus, \[ \cos C = \frac{1}{2} \] ### Step 10: Finding Angle C The angle \( C \) corresponding to \( \cos C = \frac{1}{2} \) is: \[ C = 60^\circ \] ### Final Answer Therefore, the angle \( C \) is: \[ \boxed{60^\circ} \]

To solve the problem, we start with the given equation for triangle \( \Delta ABC \): \[ \frac{1}{b+c} + \frac{1}{c+a} = \frac{3}{a+b+c} \] ### Step 1: Cross-Multiply We can cross-multiply to eliminate the fractions. This gives us: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC , If (1)/(b+c)+(1)/(c+a)=(3)/(a+b+c) , then cosC=

In a !ABC , if 1/(b+c)+1/(c+a)=3/(a+b+c) , then angleC =

if a+(1)/(b)=b+(1)/(c)=c+(1)/(a) (where a!=b!=c) then abc is equal to ?

In DeltaABC , If 1/(a+b)+1/(b+c)=3/(a+b+c) , then angleB=?

If in a DeltaABC,Delta = ( c + a - b) (a + b - c), then tan A is equal to

If a+(1)/(b)=b+(1)/(c )=c+(1)/(a) (where a!=b!=c ), then the abc is equal to

In DeltaABC," if " angleC=90^(@)," then " (a+c)/(b)+(b+c)/(a) is equal to :

In a triangle ABC, if (1+(a)/(b)+(c)/(b))(1+(b)/(c)-(a)/(c))=3 then the angle A is equal to