Home
Class 12
MATHS
In DeltaABC if sin^2(A/2), sin^2(B/2), s...

In `DeltaABC` if `sin^2(A/2), sin^2(B/2), sin^2(C/2)` are in H.P then `a,b,c` will be in

A

AP

B

GP

C

HP

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Here , `(1)/("sin"^(2)(A)/(2)),(1)/("sin"^(2)(B)/(2))and(1)/("sin"^(2)(C)/(2))` are in AP .
`rArr(1)/("sin"^(2)(C)/(2))-(1)/("sin"^(2)(B)/(2))=(1)/("sin"^(2)(B)/(2))-(1)/("sin"^(2)(A)/(2))`
`rArr(ab)/((s-a)(s-b))-(ac)/((s-a)(s-c))=(ac)/((s-a)(s-c))-(bc)/((s-b)(s-c))`
`rArr((a)/(s-a))[(b(s-c)-c(s-b))/((s-b)(s-c))]=((c)/(s-c))[(a(s-b)-b(s-a))/((s-a)(s-b))]`
`rArra(bs-cs)=c(as-bs)`
`rArrab+bc=2acrArr(1)/(c)+(1)/(a)=(2)/(b)`
Hence , a , b and , c are in HP.
Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC if sin^(2)((A)/(2)),sin^(2)((B)/(2)),sin^(2)((C)/(2)) are in H.P then a,b,c will be in ,sin^(2)((C)/(2))

In !ABC , if sin^(2)A/2,sin^(2)B/2,sin^(2)C/2 be in H.P., then a , b , c will be in

If sin^(2)((A)/(2)),sin^(2)((B)/(2)), and sin^(2)((C)/(2)) are in H.P. then prove that the sides of triangle are in H.P.

In any DeltaABC, sum a^(2) (sin^2 B - sin^2 C) =

In DeltaABC , if sin^(2)A+sin^(2)B=sin^(2)C and l(AB)=10, then the maximum value of the area of DeltaABC is

In Delta ABC , if sin^(2)A + sin^(2)B = sin^(2)C , then show that a^(2) + b^(2) = c^(2) .

If a,b,c are in HP, then prove that sin ^(2) ""(A)/(2), sin ^(2) ""(B)/(2), sin ^(2) ""(C )/(2) are also in HP.

If a, b,c be the sides foi a triangle ABC and if roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal then sin^2 A/2, sin^2, B/2, sin^2 C/2 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In a DeltaABC,R^(2) (sin 2A+sin 2B+sin 2C)=