Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" ...

If `sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y` is equal to

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`pi`

D

`(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \] ### Step 1: Rewrite \(\sin^{-1} x\) and \(\sin^{-1} y\) We know from trigonometric identities that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This means we can express \(\sin^{-1} x\) as: \[ \sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x \] Similarly, we can express \(\sin^{-1} y\) as: \[ \sin^{-1} y = \frac{\pi}{2} - \cos^{-1} y \] ### Step 2: Substitute into the original equation Now, substituting these expressions into the original equation, we have: \[ \left(\frac{\pi}{2} - \cos^{-1} x\right) + \left(\frac{\pi}{2} - \cos^{-1} y\right) = \frac{\pi}{2} \] ### Step 3: Simplify the equation Combining the terms gives us: \[ \frac{\pi}{2} + \frac{\pi}{2} - \cos^{-1} x - \cos^{-1} y = \frac{\pi}{2} \] This simplifies to: \[ \pi - \cos^{-1} x - \cos^{-1} y = \frac{\pi}{2} \] ### Step 4: Isolate \(\cos^{-1} x + \cos^{-1} y\) Now, we can isolate \(\cos^{-1} x + \cos^{-1} y\): \[ \cos^{-1} x + \cos^{-1} y = \pi - \frac{\pi}{2} \] ### Step 5: Final calculation This simplifies to: \[ \cos^{-1} x + \cos^{-1} y = \frac{\pi}{2} \] ### Conclusion Thus, we conclude that: \[ \cos^{-1} x + \cos^{-1} y = \frac{\pi}{2} \] ---

To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \] ### Step 1: Rewrite \(\sin^{-1} x\) and \(\sin^{-1} y\) We know from trigonometric identities that: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to