Home
Class 12
MATHS
If sin^(-1)x - cos^(-1) x = (pi)/(6), th...

If `sin^(-1)x - cos^(-1) x = (pi)/(6)`, then what is the value of x ?

A

`(1)/(2)`

B

`(sqrt(3))/(2)`

C

`(-1)/(2)`

D

3

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `sin^(-1)x-cos^(-1)x=(pi)/(6)`
`rArr((pi)/(2)-"cos"^(-1)x)-cos^(-1)x=(pi)/(6)rArr(pi)/(3)=2cos^(-1)x`
`rArrcos^(-1)x=(pi)/(6)rArrx=(sqrt(3))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x-cos^(-1)x=(pi)/(6), " then :" x=

If sin^(-1)x-cos^(-1)x=(pi)/(6) then x=

If sin^(-1)x - cos^(-1)x=pi/6 , then: x=…..

If 4\ sin^(-1)x+cos^(-1)x=pi , then what is the value of x ?

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

if 4sin^(-1)x + cos^(-1)x =pi , then: x=…..