Home
Class 12
MATHS
If tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(...

If `tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2)`, then x is equal to

A

`sqrt(ab)`

B

`sqrt(2ab)`

C

2ab

D

ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \frac{\pi}{2} \), we can use the property of the tangent function. Here's the step-by-step solution: ### Step 1: Apply the tangent addition formula We know that: \[ \tan^{-1}(A) + \tan^{-1}(B) = \frac{\pi}{2} \implies AB = 1 \] In our case, let \( A = \frac{a}{x} \) and \( B = \frac{b}{x} \). Therefore, we have: \[ \frac{a}{x} \cdot \frac{b}{x} = 1 \] ### Step 2: Simplify the equation This simplifies to: \[ \frac{ab}{x^2} = 1 \] ### Step 3: Rearrange to find \( x^2 \) Multiplying both sides by \( x^2 \) gives: \[ ab = x^2 \] ### Step 4: Solve for \( x \) Taking the square root of both sides, we find: \[ x = \pm \sqrt{ab} \] ### Final Answer Thus, the value of \( x \) is: \[ x = \sqrt{ab} \quad \text{or} \quad x = -\sqrt{ab} \]

To solve the equation \( \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \frac{\pi}{2} \), we can use the property of the tangent function. Here's the step-by-step solution: ### Step 1: Apply the tangent addition formula We know that: \[ \tan^{-1}(A) + \tan^{-1}(B) = \frac{\pi}{2} \implies AB = 1 \] In our case, let \( A = \frac{a}{x} \) and \( B = \frac{b}{x} \). Therefore, we have: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)