Home
Class 12
MATHS
sin(2"sin"^(-1)sqrt((63)/(65))) is equa...

`sin(2"sin"^(-1)sqrt((63)/(65)))` is equal to

A

`(2sqrt(126))/(65)`

B

`(4sqrt(65))/(65)`

C

`(8sqrt(63))/(65)`

D

`(sqrt(63))/(65)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin(2 \sin^{-1}(\sqrt{\frac{63}{65}})) \), we can follow these steps: ### Step 1: Let \( x = \sin^{-1}(\sqrt{\frac{63}{65}}) \) This implies that \( \sin(x) = \sqrt{\frac{63}{65}} \). ### Step 2: Use the double angle formula for sine The double angle formula for sine states that: \[ \sin(2x) = 2 \sin(x) \cos(x) \] So, we can write: \[ \sin(2 \sin^{-1}(\sqrt{\frac{63}{65}})) = 2 \sin(x) \cos(x) \] ### Step 3: Calculate \( \cos(x) \) Using the Pythagorean identity, we know that: \[ \cos^2(x) + \sin^2(x) = 1 \] Substituting \( \sin(x) = \sqrt{\frac{63}{65}} \): \[ \cos^2(x) + \left(\sqrt{\frac{63}{65}}\right)^2 = 1 \] \[ \cos^2(x) + \frac{63}{65} = 1 \] \[ \cos^2(x) = 1 - \frac{63}{65} = \frac{2}{65} \] Thus, \[ \cos(x) = \sqrt{\frac{2}{65}} = \frac{\sqrt{2}}{\sqrt{65}} \] ### Step 4: Substitute \( \sin(x) \) and \( \cos(x) \) into the double angle formula Now we can substitute back into the double angle formula: \[ \sin(2x) = 2 \sin(x) \cos(x) = 2 \left(\sqrt{\frac{63}{65}}\right) \left(\frac{\sqrt{2}}{\sqrt{65}}\right) \] \[ = 2 \cdot \sqrt{\frac{63 \cdot 2}{65 \cdot 65}} = 2 \cdot \sqrt{\frac{126}{4225}} \] ### Step 5: Simplify the expression Now we simplify: \[ = \frac{2\sqrt{126}}{65} \] ### Final Answer Thus, the value of \( \sin(2 \sin^{-1}(\sqrt{\frac{63}{65}})) \) is: \[ \frac{2\sqrt{126}}{65} \]

To solve the expression \( \sin(2 \sin^{-1}(\sqrt{\frac{63}{65}})) \), we can follow these steps: ### Step 1: Let \( x = \sin^{-1}(\sqrt{\frac{63}{65}}) \) This implies that \( \sin(x) = \sqrt{\frac{63}{65}} \). ### Step 2: Use the double angle formula for sine The double angle formula for sine states that: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin((1)/(4)sin^(-1)((sqrt(63))/(8))is

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

cos20^(@)+2sin^(2)55^(@)-sqrt(2)sin65^(@) is equal to