Home
Class 12
MATHS
Given , 0lexle(1)/(2), then the value of...

Given , `0lexle(1)/(2)`, then the value of `tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]` is

A

1

B

`sqrt(3)`

C

`-1`

D

`(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the expression: \[ \tan\left[\sin^{-1}\left(\frac{x}{\sqrt{2}} + \frac{\sqrt{1-x^2}}{\sqrt{2}}\right) - \sin^{-1}(x)\right] \] Given that \(0 \leq x \leq \frac{1}{2}\). ### Step 1: Rewrite the expression inside the tangent We can combine the terms inside the sine inverse by taking a common denominator: \[ \sin^{-1}\left(\frac{x + \sqrt{1-x^2}}{\sqrt{2}}\right) - \sin^{-1}(x) \] ### Step 2: Substitute \( \sin^{-1}(x) = \theta \) Let \( \theta = \sin^{-1}(x) \). Then, we have: \[ x = \sin(\theta) \] Now, substitute \( x \) in the expression: \[ \tan\left[\sin^{-1}\left(\frac{\sin(\theta) + \sqrt{1 - \sin^2(\theta)}}{\sqrt{2}}\right) - \theta\right] \] ### Step 3: Simplify the square root term Using the Pythagorean identity, we know that: \[ \sqrt{1 - \sin^2(\theta)} = \cos(\theta) \] Thus, the expression becomes: \[ \tan\left[\sin^{-1}\left(\frac{\sin(\theta) + \cos(\theta)}{\sqrt{2}}\right) - \theta\right] \] ### Step 4: Factor out \( \frac{1}{\sqrt{2}} \) Now, we can factor out \( \frac{1}{\sqrt{2}} \): \[ \tan\left[\sin^{-1}\left(\frac{1}{\sqrt{2}}(\sin(\theta) + \cos(\theta))\right) - \theta\right] \] ### Step 5: Recognize the sine addition formula The term \( \sin(\theta) + \cos(\theta) \) can be expressed using the sine addition formula: \[ \sin(\theta + \frac{\pi}{4}) = \frac{1}{\sqrt{2}}(\sin(\theta) + \cos(\theta)) \] Thus, we rewrite the expression as: \[ \tan\left[\sin^{-1}\left(\sin\left(\theta + \frac{\pi}{4}\right)\right) - \theta\right] \] ### Step 6: Apply the sine inverse property Using the property of sine inverse, we have: \[ \tan\left[\theta + \frac{\pi}{4} - \theta\right] = \tan\left(\frac{\pi}{4}\right) \] ### Step 7: Evaluate the tangent Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we conclude that: \[ \tan\left[\sin^{-1}\left(\frac{x}{\sqrt{2}} + \frac{\sqrt{1-x^2}}{\sqrt{2}}\right) - \sin^{-1}(x)\right] = 1 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{1} \]

To solve the problem step by step, we need to evaluate the expression: \[ \tan\left[\sin^{-1}\left(\frac{x}{\sqrt{2}} + \frac{\sqrt{1-x^2}}{\sqrt{2}}\right) - \sin^{-1}(x)\right] \] Given that \(0 \leq x \leq \frac{1}{2}\). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

if x greater than equal to 0 and less than equal to 1/2 then find the value of tan[sin^(-1){(x)/(sqrt(2))+sqrt((1-x^(2))/(2))}-sin^(-1)x]

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

Given that 0<=x<=(1)/(2), and A=tan(sin^(-1)((x)/(sqrt(2))+sqrt((1-x^(2))/(2)))-sin^(-1)x) .If B=tan(4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))) ,then find the value of A " and " B

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

Find the value of lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)