Home
Class 12
MATHS
Find the value of "cos"(2cos^(-1)x+sin^(...

Find the value of `"cos"(2cos^(-1)x+sin^(-1)x)` at `x=1/5,` where `0lt=pi` and `-pi/2lt=sin^(-1)xlt=pi/2dot`

A

1

B

3

C

0

D

`-(2sqrt(6))/(5)`

Text Solution

Verified by Experts

The correct Answer is:
D

`cos(2cos^(-1)x+sin^(-1)x)`
`=cos[2(cos^(-1)x+sin^(-1)x)-sin^(-1)x]`
`=cos(pi-sin^(-1)x)=-cos(sin^(-1)x)" " [becausecos^(-1)x+sin^(-1)x=(pi)/(2)]`
`=-cos[sin^(-1)(-(1)/(5))] " " [becausex=(1)/(5)]`
`=-cos(-"cos"^(-1)(2sqrt(6))/(5))=-(2sqrt(6))/(5) " " [becausecos(-theta)=costheta] " " [becausesin^(-1)x=cos^(-1)sqrt(1-x^(2))]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

What is the sign of cos( x/2) – sin(x/2) when (i) 0lt x lt pi/4 (ii) (pi)/(2)lt xlt pi

The values of x which satisfy 18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0 and 18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0 simultaneously are

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi