Home
Class 12
MATHS
cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1))) is...

`cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1)))` is equal to

A

`sqrt(2)-1`

B

`(pi)/(4)`

C

`(3pi)/(4)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

`cot^(-1)(sqrt(2)-1)=(pi)/(2)-tan^(-1)(sqrt(2)-1)=(pi)/2)-tan^(-1)("tan"(pi)/(8))`
`=(pi)/(2)-(pi)/(8)=(4pi-pi)/(8)=(3pi)/(8)`
`thereforecos^(-1)[cos{2*cot^(-1)(sqrt(2)-1)}]=cos^(-1)["cos{"{xx(3pi)/(8)}]`
`=cos^(-1)["cos"(3pi)/(4)]=(3pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

cos^(-1){cos2cot^(-1)(sqrt(2)-1)}

cos^(-1) ( cos( 2 cot^(-1)(sqrt2 - 1))) is equal to

"cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)] is equal to

(tan^(-1)(sqrt3)-sec^(-1)(-2))/(cosec^(-1)(-sqrt2)+cos^(-1)(-(1)/(2))) is equal to

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to