Home
Class 12
MATHS
The value of tan^(-1)((sin2-1)/(cos2)) ...

The value of `tan^(-1)((sin2-1)/(cos2))` is

A

`(pi)/(2)-1`

B

`1-(pi)/(4)`

C

`2-(pi)/(2)`

D

`(pi)/(4)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}\left(\frac{\sin 2 - 1}{\cos 2}\right) \), we will follow these steps: ### Step 1: Rewrite \(\sin 2\) and \(\cos 2\) Using the double angle formulas: \[ \sin 2 = 2 \sin 1 \cos 1 \] \[ \cos 2 = \cos^2 1 - \sin^2 1 \] So we can substitute these into our expression. ### Step 2: Substitute into the expression Now substituting these into the original expression: \[ \tan^{-1}\left(\frac{2 \sin 1 \cos 1 - 1}{\cos^2 1 - \sin^2 1}\right) \] ### Step 3: Simplify the numerator The numerator becomes: \[ 2 \sin 1 \cos 1 - 1 \] We can rewrite \(1\) as \(\sin^2 1 + \cos^2 1\): \[ 2 \sin 1 \cos 1 - (\sin^2 1 + \cos^2 1) = 2 \sin 1 \cos 1 - \sin^2 1 - \cos^2 1 \] ### Step 4: Factor the numerator The numerator can be factored as: \[ -(\sin^2 1 + \cos^2 1 - 2 \sin 1 \cos 1) = -(\sin 1 - \cos 1)^2 \] ### Step 5: Substitute back into the expression Now we have: \[ \tan^{-1}\left(\frac{-(\sin 1 - \cos 1)^2}{\cos^2 1 - \sin^2 1}\right) \] ### Step 6: Simplify the denominator The denominator can be rewritten as: \[ \cos^2 1 - \sin^2 1 = (\cos 1 + \sin 1)(\cos 1 - \sin 1) \] ### Step 7: Final expression Thus, we can rewrite our expression as: \[ \tan^{-1}\left(-\frac{(\sin 1 - \cos 1)^2}{(\cos 1 + \sin 1)(\cos 1 - \sin 1)}\right) \] ### Step 8: Recognize the tangent identity Using the identity for tangent subtraction: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] we can express our result in terms of angles. ### Step 9: Final calculation Recognizing that: \[ \tan^{-1}\left(-\frac{(\sin 1 - \cos 1)^2}{(\cos 1 + \sin 1)(\cos 1 - \sin 1)}\right) = -\left(\frac{\pi}{4} - 1\right) \] Thus, the final answer is: \[ 1 - \frac{\pi}{4} \] ### Summary The value of \( \tan^{-1}\left(\frac{\sin 2 - 1}{\cos 2}\right) \) is: \[ 1 - \frac{\pi}{4} \]

To solve the problem \( \tan^{-1}\left(\frac{\sin 2 - 1}{\cos 2}\right) \), we will follow these steps: ### Step 1: Rewrite \(\sin 2\) and \(\cos 2\) Using the double angle formulas: \[ \sin 2 = 2 \sin 1 \cos 1 \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)

The value of tan^(-1) [2 sin (cos^(-1) ""(1)/(2))] is

The value of tan^(-1)[2 sin(2 cos^(-1)""(sqrt(3))/(2))] is

Write the value of tan^(-1){2sin(2cos^(-1)(sqrt(3))/(2))}

The value of sin (2 tan ^(-1) "" (1)/(3)) + cos (tan ^(-1) 2 sqrt2) is (p)/(q), then pq is

6.Find the value of tan^(-1)(1) + cos^(-1)(-1/2) + sin^(-1)(-1/2)

Find the value of: tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2))

Find the value of: tan^(-1)[2cos(2sin^(-1)((1)/(2)))]