Home
Class 12
MATHS
The value of sin^(-1){cos(4095^(@))} is...

The value of `sin^(-1){cos(4095^(@))}` is equal to

A

`-(pi)/(3)`

B

`(pi)/(6)`

C

`-(pi)/(4)`

D

`(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C

`cos(4095^(@)=cos(45xx90^(@)+45^(@))`
`=-sin45^(@)=-"sin"(pi)/(4)=sin(-(pi)/(4))`
`therefore=sin^(-1){cos(4095^(@))}`
`=sin^(-1)sin(-(pi)/(4))=-(pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin cot^(-1)tan cos^(-1)x is equal to:

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

The value of (sin x-cos x)/(sin^(3)x) is equal to :

If a=int_(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)cos^(2)(sin1) is equal to

If sin theta+cos ec theta=2, then the value of sin^(8)theta+cos ec^(8)theta is equal to

The value of cos 15^(@) - sin 15^(@) is equal to

The value of cos 57^(@) + sin 27^(@) is equal to

sin^(-1)x+cos^(-1)x is equal to

find the value of sin(sin^(-1)a+cos^(-1)a)