Home
Class 12
MATHS
If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)(...

If `tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0`, them one of the values of x is equal to

A

`-1`

B

5

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x+2) + \tan^{-1}(x-2) - \tan^{-1}\left(\frac{1}{2}\right) = 0 \), we can follow these steps: ### Step 1: Rearrange the equation We can rearrange the equation to isolate the inverse tangent terms: \[ \tan^{-1}(x+2) + \tan^{-1}(x-2) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 2: Apply the formula for the sum of inverse tangents Using the identity \( \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right) \), we can let \( A = x + 2 \) and \( B = x - 2 \): \[ \tan^{-1}\left(\frac{(x+2) + (x-2)}{1 - (x+2)(x-2)}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 3: Simplify the left-hand side Calculating the numerator and denominator: - Numerator: \( (x + 2) + (x - 2) = 2x \) - Denominator: \( 1 - (x^2 - 4) = 1 - x^2 + 4 = 5 - x^2 \) Thus, we have: \[ \tan^{-1}\left(\frac{2x}{5 - x^2}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 4: Set the arguments equal Since the inverse tangent functions are equal, we can set their arguments equal to each other: \[ \frac{2x}{5 - x^2} = \frac{1}{2} \] ### Step 5: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ 2(2x) = 1(5 - x^2) \] This simplifies to: \[ 4x = 5 - x^2 \] ### Step 6: Rearrange into standard form Rearranging this equation gives: \[ x^2 + 4x - 5 = 0 \] ### Step 7: Factor the quadratic equation We can factor this quadratic: \[ (x + 5)(x - 1) = 0 \] ### Step 8: Solve for x Setting each factor to zero gives us the possible solutions: \[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \] \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] ### Conclusion Thus, one of the values of \( x \) is \( -5 \) and the other value is \( 1 \).

To solve the equation \( \tan^{-1}(x+2) + \tan^{-1}(x-2) - \tan^{-1}\left(\frac{1}{2}\right) = 0 \), we can follow these steps: ### Step 1: Rearrange the equation We can rearrange the equation to isolate the inverse tangent terms: \[ \tan^{-1}(x+2) + \tan^{-1}(x-2) = \tan^{-1}\left(\frac{1}{2}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If tan^(-1)(1)+tan^(-1)(x)=0 then the value of "x" is

If tan^(-1)(x+1)/(x-1)+tan^(-1)(x-1)/x=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

Solve for x : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)(8/(79)) , x >0

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|=0 , then the number of values of x satisfying the equation is 1 (b) 2 (c) 3 (d) 4

If tan^(-1)((1-x)/(1+x))=1/2 tan^(-1) x then the value of x is