Home
Class 12
MATHS
If cot(cos^(-1)x)=sec{tan^(-1)(a)/sqrt(b...

If `cot(cos^(-1)x)=sec{tan^(-1)(a)/sqrt(b^(2)-a^(-2))}` then x equals

A

`(b)/(sqrt(2b^(2)-a^(2)))`

B

`(a)/(sqrt(2b^(2)-a^(2)))`

C

`(sqrt(2b^(2)-a^(2)))/(a)`

D

`(sqrt(2b^(2)-a^(2)))/(b)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `cot(cos^(-1)x)=sec("tan"^(-1)(a)/(sqrt(b^(2)-a^(2))))`
`thereforecot[cot^(-1)((x)/(sqrt(1-x^(2))))]=sec["sec"^(-1)((b)/(sqrt(b^(2)-a^(2))))]`
`rArr(x)/(sqrt(1-x^(2)))=(b)/(sqrt(b^(2)-a^(2)))`
`rArrx^(2)(b^(2)-a^(2))=b^(2)-b^(2)-x^(2)`
`rArrx^(2)(2b^(2)-a^(2))=b^(2)`
`rArrx=+-(b)/(sqrt(2b^(2)-a^(2)))`
`rArrx=(b)/(sqrt(2b^(2)-a^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(log_(cot x)tan x)(log_(tan x)cot x)^(-1)+tan^(-1)((x)/(sqrt(4-x^(2)))) then f'(0) is equal to

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

If tan(cos^(-1)x)=sin(cot^(-1)1/2) then x is equal to- a.1/sqrt(5)b.2/sqrt(5)c.3/sqrt(5)d.sqrt(5)/3

Prove that: csc(tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a)))))=sqrt(3-a^(2)) where a in[0,1]

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

If 0

If x=sec^(2)(tan^(-1)2)+cos ec^(2)(cot^(-1)3) and y=tan^(-1)((sqrt(1+tan^(2))8-1)/(tan8)) then 15x^(2)+4y^(2) is equal to 3434+lambda where lambda=