Home
Class 12
MATHS
The value of "tan"^(-1)(1)/(2)+"tan"^(...

The value of `"tan"^(-1)(1)/(2)+"tan"^(-1)(1)/(3)+"tan"^(-1)(7)/(8)` is

A

`"tan"^(-1)(7)/(8)`

B

`cot^(-1)15`

C

`tan^(-1)15`

D

`"tan"^(-1)(25)/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{7}{8}\right) \), we will use the formula for the sum of inverse tangents: \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right) \] ### Step 1: Combine the first two terms Let \( A = \frac{1}{2} \) and \( B = \frac{1}{3} \). Using the formula: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}\right) \] ### Step 2: Calculate the numerator and denominator 1. **Numerator**: \[ \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] 2. **Denominator**: \[ 1 - \frac{1}{2} \cdot \frac{1}{3} = 1 - \frac{1}{6} = \frac{5}{6} \] ### Step 3: Combine the results Now substituting back into the formula: \[ \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] ### Step 4: Simplify Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} \] ### Step 5: Add the third term Now we need to add \( \tan^{-1}\left(\frac{7}{8}\right) \): \[ \tan^{-1}(1) + \tan^{-1}\left(\frac{7}{8}\right) = \tan^{-1}\left(\frac{1 + \frac{7}{8}}{1 - 1 \cdot \frac{7}{8}}\right) \] ### Step 6: Calculate the new numerator and denominator 1. **Numerator**: \[ 1 + \frac{7}{8} = \frac{8}{8} + \frac{7}{8} = \frac{15}{8} \] 2. **Denominator**: \[ 1 - 1 \cdot \frac{7}{8} = 1 - \frac{7}{8} = \frac{1}{8} \] ### Step 7: Combine the results again Now substituting back: \[ \tan^{-1}\left(\frac{\frac{15}{8}}{\frac{1}{8}}\right) = \tan^{-1}(15) \] ### Final Result Thus, the value of the expression is: \[ \tan^{-1}(15) \]

To solve the expression \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{7}{8}\right) \), we will use the formula for the sum of inverse tangents: \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right) \] ### Step 1: Combine the first two terms Let \( A = \frac{1}{2} \) and \( B = \frac{1}{3} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

the value of 3tan^(-1)((1)/(4))+tan^(-1)((1)/(20))+tan^(-1)((1)/(1985))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

tan^(-1)((4)/(7))-tan^(-1)((1)/(5))=tan^(-1)((1)/(3))

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)