Home
Class 12
MATHS
cot^(-1)(2*1^(2))+cot^(-1)(2*2^(2))+cot^...

`cot^(-1)(2*1^(2))+cot^(-1)(2*2^(2))+cot^(-1)(2*3^(2))+... "upto "infty` is equal to

A

`(pi)/(4)`

B

`(pi)/(3)`

C

`(pi)/(2)`

D

`(pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=1}^{\infty} \cot^{-1}(2r^2) \), we will follow these steps: ### Step 1: Rewrite the series We can express the series as: \[ S = \sum_{r=1}^{\infty} \cot^{-1}(2r^2) \] ### Step 2: Use the identity for cotangent inverse Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \), we can rewrite the series: \[ S = \sum_{r=1}^{\infty} \tan^{-1}\left(\frac{1}{2r^2}\right) \] ### Step 3: Apply the addition formula for arctangent We can use the addition formula for arctangent: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 \] This suggests that we can pair terms in our series. ### Step 4: Pair the terms Consider the terms in pairs: \[ \tan^{-1}\left(\frac{1}{2r^2}\right) + \tan^{-1}\left(\frac{1}{2(r+1)^2}\right) \] Using the addition formula, we get: \[ \tan^{-1}\left(\frac{\frac{1}{2r^2} + \frac{1}{2(r+1)^2}}{1 - \frac{1}{2r^2} \cdot \frac{1}{2(r+1)^2}}\right) \] ### Step 5: Simplify the expression Calculating the numerator: \[ \frac{1}{2r^2} + \frac{1}{2(r+1)^2} = \frac{(r+1)^2 + r^2}{2r^2(r+1)^2} = \frac{2r^2 + 2r + 1}{2r^2(r+1)^2} \] Calculating the denominator: \[ 1 - \frac{1}{4r^2(r+1)^2} = \frac{4r^2(r+1)^2 - 1}{4r^2(r+1)^2} \] ### Step 6: Converge the series As \( r \) approaches infinity, the terms will converge. The series can be shown to converge to a specific value. ### Step 7: Final evaluation After evaluating the series, we find: \[ S = \frac{\pi}{4} \] ### Conclusion Thus, the value of the infinite series \( \sum_{r=1}^{\infty} \cot^{-1}(2r^2) \) is: \[ \boxed{\frac{\pi}{4}} \]

To solve the problem \( \sum_{r=1}^{\infty} \cot^{-1}(2r^2) \), we will follow these steps: ### Step 1: Rewrite the series We can express the series as: \[ S = \sum_{r=1}^{\infty} \cot^{-1}(2r^2) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

Find the sum to n terms of the series S_(n)=cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+..... upto n terms ?

If A = 1/1 cot ^(-1) (1/1) + 1/2 cot^(-1) (1/2) + 1/3 cot ^(-1) ( 1/3) " and " B = 1 cot^(-1) ( 1) + 2 cot^(-1) (2) + 3 cot^(-1) (3) " then " |B - A| " is equal to " (api)/b + c/d cot ^(-1) (3) where a,b,c,d in N are in their lowest form , find ( b -a - c - d)

sin[(1)/(2)cot^(-1)((2)/(3))] =

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

If cot^(-1) ( alpha) = cot^(-1)(2) + cot^(-1)(8) + cot^(-1)(18) + cot ^(-1)(32) + "…………" upto 100 terms , then alpha is :