Home
Class 12
MATHS
The value of cos [tan^-1 {sin (cot^-1 x)...

The value of `cos [tan^-1 {sin (cot^-1 x)}]` is

A

`sqrt((x^(2)+1)/(x^(2)-1))`

B

`sqrt((1-x^(2))/(x^(2)+2))`

C

`sqrt((1-x^(2))/(1+x^(2)))`

D

`sqrt((x^(2)+1)/(x^(2)+2))`

Text Solution

Verified by Experts

The correct Answer is:
D

`cos[tan^(-1){sin(cot^(-1)x)}]`
`=cos[tan^(-1){sin("sin"^(-1)(1)/(sqrt(1+x^(2))))}]`
`=cos[tan^(-1)((1)/(sqrt(1+x^(2))))]`
`=cos[cos^(-1)sqrt((1+x^(2))/(2+x^(2)))]`
`=sqrt((1+x^(2))/(2+x^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

cos[tan^(-1){sin(cot^(-1)x)}] is equal to

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

If x gt 0 then the value of sin [cot ^(-1) cos( tan^(-1)x)] is equal to-

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

The value of sin cot^(-1)tan cos^(-1)x is equal to:

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

The number values of x if cos(tan^(-1)(1+x))=sin(cot^(-1)x) is/are