Home
Class 12
MATHS
Prove that: tan^(-1){pi/4+1/2\ cos^(-1)a...

Prove that: `tan^(-1){pi/4+1/2\ cos^(-1)a/b}+tan{pi/4-1/2\ cos^(-1)a/b}=(2b)/a`

A

`(2a)/(b)`

B

`(2b)/(a)`

C

`(a)/(b)`

D

`(b)/(a)`

Text Solution

Verified by Experts

The correct Answer is:
B

`tan[(pi)/(4)+(1)/(2)"cos"^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)"cos"^(-1)((a)/(b))]`
`=tan[(pi)/(4)+phi]+tan[(pi)/(4)-phi]`
`["put"(1)/(2)"cos"^(-1)((a)/(b))=phirArrcos2phi=(a)/(b)]`
`=(1+tanphi)/(1-tanphi)+(1-tanphi)/(1+tanphi)`
`=(2(1+tan^(2)phi))/(1-tan^(2)phi)`
`=(2sec^(2)phi)/((cos^(2)phi-sin^(2)phi)/(cos^(2)phi))`
`=(2)/(cos2phi)=(2b)/(a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan[pi/4+1/2cos^(-1)""a/b]+tan[pi/4-1/2cos^(-1)""a/b]=2b/a

Prove that tan(pi/4 +1/2 cos^(-1) (a/b)) + tan^(-1) (pi/4 -1/2 cos^(-1) (a/b)) =2b/a

Prove that : tan^(-1) [2 cos(2sin^(-1)(1/2))] = pi/4

Prove that tan((pi)/(4)+(1)/(2)cos^(-1)((a)/(b)))+tan((pi)/(4)-(1)/(2)cos^(-1)((a)/(b)))=(2b)/(a)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4