Home
Class 12
MATHS
5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)...

`5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi`, then x is equal to

A

3

B

`-sqrt(3)`

C

`sqrt(2)`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 7\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\tan^{-1}\left(\frac{2x}{1-x^2}\right) - \tan^{-1}x = 5\pi \), we will use the relationships between inverse trigonometric functions. ### Step 1: Rewrite the equation using known identities We know from trigonometric identities that: - \( \cos^{-1}(y) = \tan^{-1}\left(\frac{\sqrt{1-y^2}}{y}\right) \) - \( \sin^{-1}(y) = \tan^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) \) - \( \tan^{-1}(y) = \tan^{-1}(x) \) Using the identity for \( \cos^{-1} \): \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \tan^{-1}\left(\frac{\sqrt{1 - \left(\frac{1-x^2}{1+x^2}\right)^2}}{\frac{1-x^2}{1+x^2}}\right) \] ### Step 2: Simplifying the terms Using the identity for \( \sin^{-1} \): \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \tan^{-1}\left(\frac{\frac{2x}{1+x^2}}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}}\right) \] Using the identity for \( \tan^{-1} \): \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \tan^{-1}(x) + \tan^{-1}(x) \] ### Step 3: Substitute back into the equation Now substituting these back into the original equation, we can simplify: \[ 5\tan^{-1}\left(\frac{\sqrt{1 - \left(\frac{1-x^2}{1+x^2}\right)^2}}{\frac{1-x^2}{1+x^2}}\right) + 7\tan^{-1}\left(\frac{\frac{2x}{1+x^2}}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}}\right) - 4\tan^{-1}\left(\frac{2x}{1-x^2}\right) - \tan^{-1}(x) = 5\pi \] ### Step 4: Combine like terms We can combine the terms involving \( \tan^{-1} \): \[ (5 + 7 - 4 - 1)\tan^{-1}(x) = 5\pi \] This simplifies to: \[ 7\tan^{-1}(x) = 5\pi \] ### Step 5: Solve for \( x \) Dividing both sides by 7 gives: \[ \tan^{-1}(x) = \frac{5\pi}{7} \] Taking the tangent of both sides: \[ x = \tan\left(\frac{5\pi}{7}\right) \] ### Final Answer Thus, the value of \( x \) is: \[ x = \tan\left(\frac{5\pi}{7}\right) \]

To solve the equation \( 5\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 7\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\tan^{-1}\left(\frac{2x}{1-x^2}\right) - \tan^{-1}x = 5\pi \), we will use the relationships between inverse trigonometric functions. ### Step 1: Rewrite the equation using known identities We know from trigonometric identities that: - \( \cos^{-1}(y) = \tan^{-1}\left(\frac{\sqrt{1-y^2}}{y}\right) \) - \( \sin^{-1}(y) = \tan^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) \) - \( \tan^{-1}(y) = \tan^{-1}(x) \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

If tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=(1)/(2)cos^(-1)x then x is equal to

tan^(-1)(1-x^(2)-(1)/(x^(2)))+sin^(-1)(x^(2)+(1)/(x^(2))-1) where x!=0) is equal to