Home
Class 12
MATHS
Prove that tan^(-1)(2/11)+tan^(-1)(7/24...

Prove that `tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)`

A

1

B

`(1)/(sqrt(3))`

C

`sqrt(3)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `"tan"^(-1)(2)/(11)+"tan"^(-1)(7)/(24)="tan"^(-1){((2)/(11)+(7)/(24))/(1-(2)/(11)xx(7)/(24))}`
`[becausetan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)),]`
`=tan^(-1){(48xx77)/(264-14)}=tan^(-1){(125)/(250)}=tan^(-1){(1)/(2)}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that tan^(-1)(2/11) + tan^(-1)( 7/24) =tan^(-1) (1/2)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

prove that tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3)=pi

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that : tan^(-1)1/7+tan^(-1)1/(13)=tan^(-1)2/9