Home
Class 12
MATHS
निम्नलिखित में से प्रत्येक का मान ज्ञात ...

निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए :
` tan""(1)/(2)[sin^(-1)""(2x)/(1+x^(2))+cos^(-1)""(1-y^(2))/(1+y^(2))],|x| lt 1 , y gt 0` तथा `xy lt 1`

A

`(x+y)/(1-xy)`

B

`(x-y)/(1+xy)`

C

`(xy)/(x+y)`

D

`(xy)/(x-y)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have , `"tan"(1)/(2)("sin"^(-1)(2x)/(1+x^(2))+"cos"^(-1)(1-y^(2))/(1+y^(2)))`
`="tan"(1)/(2)(2tan^(-1)x+2tan^(-1)y)`
`[because2tan^(-1)x=sin^(-1)((2x)/(1+x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2)))]`
`="tan"(1)/(2)xx2(tan^(-1)x+tan^(-1)y)`
`="tan"["tan"^(-1)((x+y)/(1-xy))]`
`=(x+y)/(1-xy)[{:(becausetan^(-1)x+tan^(-1)y=tan^(-1)y,),(="tan"^(-1)((x+y)/(1-xy)),):}]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))}=(x+y)/(1-xy) , where |x| lt 1,y gt 0 and xy lt 1 .

Find the value of: tan((1)/(2)[(sin^(-1)(2x))/(1+x^(2))+(cos^(-1)(1-y^(2)))/(1+y^(2))]),|x| 0 and xy,|x| 0

Simplity tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)(1-y^(2))/(1+y^(2))} , if xgtygt1 .

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Find the value of the following: tan((1)/(2))[sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-y^(2))/(1+y^(2)))],|x| 0 and xy<1

2x - y gt 1 , x - 2y lt 1

Prove that : tan(1/2){sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))}=(x+y)/(1-x y) , if |x| 0 and x y<1 .

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1