Home
Class 12
MATHS
tan^(-1)sqrt(x) is equal to...

`tan^(-1)sqrt(x)` is equal to

A

`(1)/(2)"cos"^(-1)(1-x)/(1+x)`

B

`(1)/(2)"cos"^(-1)(1+x)/(1-x)`

C

`(1)/(2)"cos"^(-1)(1)/(x)`

D

`(1)/(2)"cos"^(-1)(1)/(x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

`tan^(-1)sqrt(x)=(1)/(2)(2tan^(-1)sqrt(x))`
[multiply and divide by2]
`=(1)/(2)"cos"^(-1){(1-(sqrt(x))^(2))/(1+(sqrt(x))^(2))}`
`[because2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0]`
`=(1)/(2)"cos"^(-1)((1-x)/(1+x))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int tan^(-1)sqrt xdx is equal to:

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

tan(cos^(-1)x) is equal to (x)/(1+x^(2)) b.(sqrt(1+x^(2)))/(x) c.(sqrt(1-x^(2)))/(x) d.sqrt(1-2x)

tan^(-1)x+tan^(-1)y is equal to

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to