Home
Class 12
MATHS
Find the value of cos^(-1)(x)+cos^(-1)((...

Find the value of `cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))`

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) \). ### Step-by-Step Solution: 1. **Let \( \alpha = \cos^{-1}(x) \)**: \[ x = \cos(\alpha) \] 2. **Rewrite the second term**: We need to evaluate \( \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) \). Substitute \( x = \cos(\alpha) \): \[ \frac{x}{2} = \frac{\cos(\alpha)}{2} \] Now, we need to simplify \( \sqrt{3 - 3x^2} \): \[ \sqrt{3 - 3x^2} = \sqrt{3 - 3\cos^2(\alpha)} = \sqrt{3(1 - \cos^2(\alpha))} = \sqrt{3\sin^2(\alpha)} = \sqrt{3} \sin(\alpha) \] Therefore, we can rewrite the expression: \[ \frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} = \frac{\cos(\alpha)}{2} + \frac{\sqrt{3} \sin(\alpha)}{2} = \frac{1}{2}(\cos(\alpha) + \sqrt{3} \sin(\alpha)) \] 3. **Recognize the cosine of a sum**: The expression \( \cos(\alpha) + \sqrt{3} \sin(\alpha) \) can be recognized as: \[ \cos(\alpha) + \sqrt{3} \sin(\alpha) = 2 \left(\frac{1}{2} \cos(\alpha) + \frac{\sqrt{3}}{2} \sin(\alpha)\right) = 2 \cos\left(\alpha - \frac{\pi}{3}\right) \] Thus, \[ \frac{1}{2}(\cos(\alpha) + \sqrt{3} \sin(\alpha)) = \cos\left(\alpha - \frac{\pi}{3}\right) \] 4. **Substituting back**: Now we have: \[ \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) = \cos^{-1}\left(\cos\left(\alpha - \frac{\pi}{3}\right)\right) \] This simplifies to: \[ \alpha - \frac{\pi}{3} \] 5. **Combine the results**: Now we can combine both parts: \[ \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) = \alpha + \left(\alpha - \frac{\pi}{3}\right) = 2\alpha - \frac{\pi}{3} \] 6. **Substituting back for \( \alpha \)**: Since \( \alpha = \cos^{-1}(x) \), we have: \[ 2\cos^{-1}(x) - \frac{\pi}{3} \] 7. **Final Result**: The final answer simplifies to: \[ \frac{\pi}{3} \]

To solve the problem, we need to find the value of \( \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) \). ### Step-by-Step Solution: 1. **Let \( \alpha = \cos^{-1}(x) \)**: \[ x = \cos(\alpha) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the set of value of x for which the equation cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3) holds goods

If f(x)=cos^(-1)x+cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then

Find the value of cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

The value of tan((sin^(-1)x+cos^(-1)x)/(2)) , when x = (sqrt(3))/(2) , is "……." .

Prove that cos^(-1)x+cos^(-1) [x/2 +(sqrt(3-3x^(2)))/2 ] = pi/3 , 1/2 le x le 1

The simplest form of (cos^(-1)x +cos^(-1){x/2+1/2sqrt(3-3x^2)}),AA x in [1/2,1] is A. Then the value of tanA is

If f(x) =cos^(-1)x+cos^(-1){(x/2+1/2sqrt(3-3x^(2)))} then f(2/3) equals

If sin^(-1)x_(i)in[0,1]AA i=1,2,3,....28 then find the maximum value of sqrt(sin^(-1)x_(1))sqrt(cos^(-1)x_(2))+sqrt(sin^(-1)x_(2))sqrt(sin^(-1)x_(3))+sqrt(sin^(-1)x_(3))sqrt(cos^(-1)x_(4))+...+sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_(1))

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1