Home
Class 12
MATHS
Prove that sin^(- 1)(8/17)+sin^(- 1)(3/...

Prove that `sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)`

A

`cos^(-1)((36)/(85))`

B

`cos^(-1)((17)/(38))`

C

`cos^(-1)((14)/(47))`

D

`cos^(-1)((42)/(61))`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `sin^(-1)((8)/(17))=xandsin^(-1)((3)/(5))=y`
Then , sin x `=(8)/(17) and sin y=(3)/(5)`
Now , cos (x+y) =cos x cosy -sin xsiny
`=sqrt(1-sin^(2)x)sqrt(1-sin^(2)y)-sinxsiny`
`=sqrt(1-((8)/(17))^(2))sqrt(1-((3)/(5))^(2))-(8)/(17)xx(3)/(5)`
`=sqrt(1-(64)/(289))sqrt(1-(9)/(25))-(24)/(85)=sqrt((22)/(289))sqrt((16)/(25))-(24)/(85)=(15)/(17)xx(4)/(5)-(24)/(85)`
`rArrx+y=cos^(-1)((60)/(85)-(24)/(85))`
`rArrsin^(-1)((8)/(17))+sin^(-1)((3)/(5))=cos^(-1)((36)/(85))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)(77/85)

Prove that: sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=tan^(-1)((77)/(6))

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=cos^(-1)((36)/(85))

Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))

Show that : sin^(-1) (3/5) + sin^(-1) (8/17) = cos^(-1) (36/85) .

Prove that sin^(-1) . 8/17 +cos^(-1) . 4/5 = cos^(-1). 36/85

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that : 2 sin^(-1)( 3/5) = tan^(-1)( 24/7)

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)