Home
Class 12
MATHS
If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then...

If `tan^(-1)a+tan^(-1)b+tan^(-1)c=pi` then prove tjhat `a+b+c=abc`

A

`a+b-c=(ab)/(c)`

B

`a+b+c=abc`

C

`a+b+c=1`

D

abc =1

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `tan^(-1)a+tan^(-1)b+tan^(-1)x=pi`
`rArrtan^(-1)((a+b)/(1-ab))+tan^(-1)x=pi`
`rArrtan^(-1)(((a+b)/(1-ab)+c)/(1-(a+b)/(1-ab)))=pi`
`rArr((a+b)/(1-ab)+c)/(1-(a+b)/(1-ab)*c)=tan^(-1)pi=0`
`rArra+b+c-abc=0`
`rArra+b+c=abc`
Promotional Banner

Similar Questions

Explore conceptually related problems

if tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove that a+b+c=abc

Q.if tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi, then prove that a+b+c=abc.

tan^(-1)a+tan^(-1)b=(pi)/(2)

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi , then which of the following is true ?

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

If tan^(3)A+tan^(3)B+tan^(3)C=3tan A*tan B*tan C then prove that triangle ABC is an equilateral triangle.

tan^(-1)( (a+b tan c)/ (b-a tan x) )

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

In a triangle ABC, if A = tan^(-1) 2 and B = tan^(-1) 3 , then C is equal to

If in triangle ABC, C = 90^circ then prove that tan^(-1) (a/(c+b)) + tan^(-1) (b/(a+c)) = pi/4 .