Home
Class 12
MATHS
Prove that :2tan^(-1)1/5+sec^(-1)(5sqrt(...

Prove that :`2tan^(-1)1/5+sec^(-1)(5sqrt(2))/7+2tan^(-1)\ 1/8=pi/4`

A

`pi`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

`2tan^(-1)((1)/(5))+sec^(-1)((5sqrt(2))/(7))+2tan^(-1)((1)/(8))`
`=2("tan"^(-1)(1)/(5)+"tan"^(-1)(1)/(8))+sec^(-1)((5sqrt(2))/(7))`
`=tan^(-1)[((1)/(5)+(1)/(8))/(1-(1)/(5)xx(1)/(8))]+tan^(-1)sqrt(((5sqrt(2))/(7))^(2)-1)`
`["put"sec^(-1)x=thetarArrx=sectheta]`
Then , `tantheta=sqrt(sec^(2)theta-1)`
`rArrtheta=tan^(-1)sqrt(x^(2)-1)`
`rArrsec^(-1)x=tan^(-1)sqrt(x^(2)-1)]`
`=2"tan"^(-1)(13)/(39)+tan^(-1)sqrt((50)/(49))-1`
`=2"tan"^(-1)(1)/(3)+"tan"^(-1)(1)/(7)="tan"^(-1){(2xx(1)/(3))/(1-((1)/(3))^(2))}+"tan"^(-1)(1)/(7)" " [because2tan^(-1)x=tan^(-1){(2x)/(1-x^(2))}]`
`="tan"^(-1)(3)/(4)+"tan"^(-1)(1)/(7)=tan^(-1)(((3)/(4)+(1)/(7))/(1-((3)/(4)xx(1)/(7))))`
`=tan^(-1)((21+4)/(28-3))=tan^(-1)(1)=tan^(-1)("tan"(pi)/(4))=(pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2(tan^(-1)1)/(5)+(sec^(-1)(5sqrt(2)))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that : tan^(-1)1/5+tan^(-1)1/7+tan^(-1)1/3+tan^(-1)1/8=pi/4

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Prove that 2tan^(-1) . 1/5 +tan^(-1). 1/4 = tan^(-1) . 32/43

Prove that tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(2)

Prove that 2 tan^(-1) ((1)/(8)) + tan^(-1) ((1)/(7)) + 2 tan^(-1) ((1)/(5)) = (pi)/(4)

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4