Home
Class 12
MATHS
If"sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x),...

`If"sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x),` then find `xdot`

A

`(1)/(3)`

B

`(1)/(2)`

C

`-(1)/(2)`

D

`-(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given , `sin[cot^(-1)(x+1)]=cos(tan^(-1)x)` . . . (i)
Let `cot^(-1)(x+1)=theta`
`rArrsintheta=(1)/(sqrt(x^(2)+2x+2))`
`rArrtheta=sin^(-1)((1)/(sqrt(x^(2)+2x+2)))`
`cot^(-1)(x+1)=sin^(-1)((1)/(sqrt(x^(2)+2x+2)))`

Let `tan^(-1)x=phirArrtanvarphi=x`
`rArrcosvarphi=(1)/(sqrt(x^(2)+1))`
`rArrvarphi=cos^(-1)((1)/(sqrt(x^(2)+1)))`
`rArrtan^(-1)x=cos^(-1)((1)/(sqrt(x^(2)+1)))`
Now , from Eq . (i) we get
`sin[sin^(-1)((1)/(sqrt(x^(2)+2x+2)))]=cos[cos^(-1)((1)/(sqrt(1+x^(2))))]`
`rArr(1)/(sqrt(x^(2)+2x+2))=(1)/(sqrt(1+x^(2)))`
`rArrsqrt(x^(2)+2x+2)=sqrt(1+x^(2))`
`rArrx^(2)+2x+2=1+x^(2)`
`rArr2x+2=1`
`rArr2x=-1`
`rArrx=-(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

sin{cot^(-1)[cos(tan^(-1)x)]}=....

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

sin cot ^ (- 1) cos tan ^ (- 1) 2

sin cot ^ (- 1) cos tan ^ (- 1) 2 =

Evaluate: sin(cot^(-1)x)( ii) cos(tan^(-1)x)

A value of x satisfying the equation "sin"[cot^(-1)(1+x)]="cos"["tan"^(-1)x] is:

If sin[2cos^(-1){cot(2tan^(-1)x)}]=0,x>0 then x =