Home
Class 12
MATHS
In any DeltaABC, prove that "a sin (B - ...

In any `DeltaABC`, prove that `"a sin (B - C) + bsin(C - A) + csin(A - B)=0`.

A

0

B

`sinA+sinB+sinC`

C

`sin^(2) A + sin^(2) B + sin^(2) C`

D

abc

Text Solution

Verified by Experts

The correct Answer is:
A

By sine rule ,we have
`(sinA)/(a)=(sinB)/(b)=(sinC)/(c)=k` (say)
Therefore , sin A=ak , sin B=bk , sin C = ck
Now , a `sin(B-C)+bsin(C-A)+csin(A-B)`
`=ksinAsin(B-C)+ksinBsin(C-A)+ksinCsinA-B)`
`=k[sin(B+C)sin(B-C)+sin(C+A)sin(C-A)+sin(A+B)sin(A-B)]`
`[becausesinA=sin{180^(@)-(B+C)}=sin(B+C)]`
`=k[sin^(2)B-sin^(2)C+sin^(2)C-sin^(2)A+sin^(2)A-sin^(2)B]`
`[becausesin(x+y)sin(x-y)=sin^(2)x-sin^(2)y]`
=k (0) =0
Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta ABC , prove that a("sin B - sin C")+b("sin C - sinA")+c("sinA - sinB")=0 .

In DeltaABC , prove that: asin(B-C)+bsin(C-A)+csinA-B)=0

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that: a sin(B-C)+bs in(C-A)+c sin(A-B)=0

In any DeltaABC, prove that : (a^2 sin (B-C))/(sin A) + (b^2 sin (C-A))/(sin B) + (c^2 sin (A-B))/(sin C) = 0

In any triangle ABC, prove that: a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0

In any Delta ABC, prove that (sin B)/(sin(B+C))=(b)/(a)

In any DeltaABC , prove that asinA-bsinB=csin(A-B)

In any DeltaABC , prove that a^(2)sin(B-C)=(b^(2)-c^(2))sinA

In DeltaABC , prove that: asinA-bsinB=csin(A-B