Home
Class 12
MATHS
If in a DeltaABC,2cosAsinC=sinB, then t...

If in a `DeltaABC,2cosAsinC=sinB`, then the triangle is

A

equilateral

B

isosceles

C

right angled

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`2cosA.sinC=sin(C+A)`
`=sinC.cosA+cosC.sinA`
`rArrcosAsinC-sinAcosC=0`
`rArrsin(C-A)=0`
`rArrC=A`
Promotional Banner

Similar Questions

Explore conceptually related problems

In any DeltaABC, is 2 cos B=a/c, then the triangle is

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

In triangleABC , if cosA=sinB-cosC , then the triangle is

In a DeltaABC, sin A sinB sinC is

In DeltaABC , with usual notations, if cosA=(sinB)/(sinC) , then the triangle is

"In a "DeltaABC, if(cosA)/a=(cosB)/b,"show that the triangle is isosceles".