Home
Class 12
MATHS
Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4...

Solve for x: `tan^(-1)3x+tan^(-1)2x=pi/4`

A

`(3x-x^(3))/(1-3x^(2))`

B

`(3x+x^(3))/(1-3x^(2))`

C

`(3x-x^(3))/(1+3x^(2))`

D

`(3x+x^(3))/(1+3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))`,
where `|x|lt(1)/(sqrt(3))`
`rArrtan^(-1)y=tan^(-1){(x+(2x)/(1-x^(2)))/(1-x((2x)/(1-x^(2))))}`
`[becausetan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)),xgt0,ygt0,xylt1]`
`rArrtan^(-1)y=tan^(-1)((x-x^(3)+2x)/(1-x^(2)-2x^(2)))`
`rArrtan^(-1)y=tan^(-1)((3x-x^(3))/(1-3x^(2)))rArry=(3x-x^(3))/(1-3x^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0

Solve for x : tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)2/3 , where x sqrt(3)

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

Solve for x : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)(8/(79)) , x >0

Solve tan^(-1)2x + tan^(-1)3x = pi/4

Solve :tan^(-1)2x+tan^(-1)3x=(pi)/(4)