Home
Class 12
MATHS
If sin theta and cos theta are the roots...

If `sin theta and cos theta` are the roots of the equation `ax^2-bx+c=0`, then `a, b and c` satisfy the relation

A

`a^(2)+b^(2)+2ac=0`

B

`a^(2)-b^(2)+2ac=0`

C

`a^(2)+c^(2)+2ab=0`

D

`a^(2)-b^(2)-2ac=0`

Text Solution

Verified by Experts

The correct Answer is:
B

Given that , `sinthetaandcostheta` are the roots of the equation `ax^(2)-bx+c=0`,
So `sintheta+costheta=(b)/(a)andsinthetacostheta=(c)/(a)`.
Using the indentity `(sintheta+costheta)^(2)=sin^(2)theta+cos^(2)theta+2sinthetacostheta`, we have
`(b^(2))/(a^(2))=1+(2c)/(a)rArra^(2)-b^(2)+2ac=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin thetaand cos theta are the roots of the equation ax^(2)-bx+c=0, then

if sin theta and cos theta are roots of the equation ax^(2)-bx+c=0 then

If sin theta,cos theta are the roots of the equation ax^(2)+bx+c=0 then

If sin phi and cos phi are the roots of the equation ax^(2)+bx+c=0, then

If sin theta and -cos theta are the roots of the equation ax^(2)-bx-c=0, where a,b and c are the sides of a triangle ABC, then cos B is equal to 1-(c)/(2a) (b) 1-(c)/(a)1+(c)/(ca) (d) 1+(c)/(3a)

If sin theta and -cos theta are the roots of the equation ax^(2) - bx - c = 0 , where a, b, and c are the sides of a triangle ABC, then cos B is equal to