Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h ...

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n`

A

`x^(2)+y^(2)+z^(2)+2xyz=1`

B

`(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z`

C

`xy+yz+zx=x+y+z-1`

D

`(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))ge6`

Text Solution

Verified by Experts

The correct Answer is:
A

`cos^(-1)x+cos^(-1)y+cos^(-1)z=pi`
`rArrsin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2)`
Also , `cos^(-1)x+cos^(-1)y=cos^(-1)(-z)`
`rArrxy-sqrt(1-x^(2))sqrt(1-y^(2))=-z`
`rArrx^(2)+y^(2)+z^(2)+2xyz=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, where -1<=x,y,z<=1, then find the value of x^(2)+y^(2)+z^(2)+2xyz

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+2xyz=12(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)zxy+yz+zx=x+y+z-1(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))>=6

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi ,then the value of x^(2012),+y^(2012)+z^(2012)+(6)/(x^(2011)+y^(2011)+z^(2011)) is equal to:

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :