Home
Class 12
MATHS
In triangle, A B Cif2a^2b^2+2b^2c^2=a^2+...

In triangle, `A B Cif2a^2b^2+2b^2c^2=a^2+b^4+c^4,` then angle B is equal to

A

`45^(@)`

B

`35^(@)`

C

`120^(@)`

D

`30^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given that , `2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4)`
`rArra^(4)+b^(4)+c^(4)-2a^(2)b^(2)-2b^(2)c^(2)+2a^(2)c^(2)=2a^(2)c^(2)`
`rArr(a^(2)-b^(2)+c^(2))^(2)=2c^(2)a^(2)`
`rArr(a^(2)-b^(2)+c^(2))/(2ca)=+-(1)/(sqrt(2))=cosB`
`rArrcosB=cos45^(@)orcos135^(@)`
`rArrB=45^(@)or135^(@)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if a^4+b^4+c^4=2c^2(a^2+b^2) , then angle C is equal to (A) 60^0 (B) 120^0 (C) 45^0 (D) 135^0

In triangle,ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4) then angle B is equal to 45^(0)(b)135^(0)120^(@)(d)60^(@)

In an acute triangle ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4), then angle

In a triangle A B C ,\ (a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB is equal to (a^2+b^2-c^2)tanC (b) (a^2+b^2+c^2)tanC (b^2+c^2-a^2)tanC (d) none of these

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to

In Delta ABC, if a=2b and A=3B, then the value of (c)/(b) is equal to