Home
Class 12
MATHS
The root of the equation tan^(-1)((x-1)/...

The root of the equation `tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))` is

A

`(3)/(8)`

B

`-(1)/(2)`

C

`(3)/(4)`

D

`(4)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`tan^(-1)[((x-1)/(x+1)+(2x-1)/(2x+1))/(1-((x-1)/(x+1))((2x-1)/(2x+1)))]=tan^(-1)((23)/(36))`
`rArr(4x^(2)-2)/(6x)=(23)/(36)rArr(2x^(2)-1)/(3x)=(23)/(36)`
`rArr(2x^(2)-1)/(x)=(23)/(12)`
`rArr24x^(2)-12-23x=0`
`(3x-4)(8x+3)=0`
`rArrx=(4)/(3),-(3)/(8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Arithmetic mean of the non-zero solutions of the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)((2)/(x^(2)))

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1)) is :