Home
Class 12
MATHS
If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)...

If `x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r))` is equal to

A

`pi`

B

`(pi)/(2)`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`because"tan"^(-1)(yz)/(xr)+"tan"^(-1)(zx)/(yr)`
`rArr"tan"^(-1)(z)/(r)(((y)/(x)+(x)/(y)))/(1-(z^(2))/(r^(2)))=tan^(-1)((zr)/(xy)*(x^(2)+y^(2))/(x^(2)+y^(2)))=cot^(-1)((xy)/(zr))`
`therefore"tan"^(-1)(xy)/(zr)="cot"^(-1)(xy)/(zr)=(pi)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+z^(2)=r^(2) and x,y,z>0, then tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xz))+tan^(-1)((zx)/(yr)) is equal to

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

Prove that tan^(-1)((x-y)/(1+xy))+tan^(-1)((y-z)/(1+yz))+tan^(-1)((z-x)/(1+zx))=tan^(-1)((x^(r)-y^(r))/(1+x^(r)y^(r)))+tan^(-1)((y^(r)-z^(r))/(1+y^(r)z^(r)))+tan^(-1)((z^(r)-x^(r))/(1+z^(r)x^(r)))