Home
Class 12
MATHS
sin^(-1)(sin3)+sin^(-1)(sin4)+sin^(-1)(s...

`sin^(-1)(sin3)+sin^(-1)(sin4)+sin^(-1)(sin5)` is equal to

A

`-1`

B

`-2`

C

12

D

`2-pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(\sin 3) + \sin^{-1}(\sin 4) + \sin^{-1}(\sin 5) \), we will use the properties of the inverse sine function and the periodicity of the sine function. ### Step 1: Analyze \( \sin^{-1}(\sin x) \) The function \( \sin^{-1}(\sin x) \) has specific cases based on the value of \( x \): 1. If \( x \) is in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), then \( \sin^{-1}(\sin x) = x \). 2. If \( x \) is in the range \( [\frac{\pi}{2}, \frac{3\pi}{2}] \), then \( \sin^{-1}(\sin x) = \pi - x \). 3. If \( x \) is in the range \( [\frac{3\pi}{2}, \frac{5\pi}{2}] \), then \( \sin^{-1}(\sin x) = x - 2\pi \). 4. If \( x \) is in the range \( [\frac{5\pi}{2}, \frac{7\pi}{2}] \), then \( \sin^{-1}(\sin x) = 3\pi - x \). ### Step 2: Calculate \( \sin^{-1}(\sin 3) \) Since \( 3 \) is in the range \( [\frac{\pi}{2}, \frac{3\pi}{2}] \) (approximately \( 1.57 \) to \( 4.71 \)), we use the second case: \[ \sin^{-1}(\sin 3) = \pi - 3 \] ### Step 3: Calculate \( \sin^{-1}(\sin 4) \) Since \( 4 \) is also in the range \( [\frac{\pi}{2}, \frac{3\pi}{2}] \), we again use the second case: \[ \sin^{-1}(\sin 4) = \pi - 4 \] ### Step 4: Calculate \( \sin^{-1}(\sin 5) \) Since \( 5 \) is in the range \( [\frac{3\pi}{2}, \frac{5\pi}{2}] \), we use the third case: \[ \sin^{-1}(\sin 5) = 5 - 2\pi \] ### Step 5: Combine the results Now we can combine all three results: \[ \sin^{-1}(\sin 3) + \sin^{-1}(\sin 4) + \sin^{-1}(\sin 5) = (\pi - 3) + (\pi - 4) + (5 - 2\pi) \] ### Step 6: Simplify the expression Combining the terms: \[ = \pi - 3 + \pi - 4 + 5 - 2\pi \] \[ = (2\pi - 2\pi) + (-3 - 4 + 5) \] \[ = 0 - 2 = -2 \] ### Final Answer Thus, the final answer is: \[ \sin^{-1}(\sin 3) + \sin^{-1}(\sin 4) + \sin^{-1}(\sin 5) = -2 \]

To solve the expression \( \sin^{-1}(\sin 3) + \sin^{-1}(\sin 4) + \sin^{-1}(\sin 5) \), we will use the properties of the inverse sine function and the periodicity of the sine function. ### Step 1: Analyze \( \sin^{-1}(\sin x) \) The function \( \sin^{-1}(\sin x) \) has specific cases based on the value of \( x \): 1. If \( x \) is in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), then \( \sin^{-1}(\sin x) = x \). 2. If \( x \) is in the range \( [\frac{\pi}{2}, \frac{3\pi}{2}] \), then \( \sin^{-1}(\sin x) = \pi - x \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplified reduces to

sin[3sin^(-1)((1)/(5))] is equal to

sin(sin^(-1)(3 pi/5))

sin^(-1)(sin(5 pi)/(3))

"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5) is equal to

√(1+sin θ) ( 1 - sin θ) is equal to