Home
Class 12
MATHS
If m and M are the least and the greates...

If m and M are the least and the greatest value of `(cos^(-1)x)^(2)+(sin^(-1)x)^(2)` , then `(M)/(m)` is equal to

A

10

B

5

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least value (m) and the greatest value (M) of the expression \((\cos^{-1} x)^2 + (\sin^{-1} x)^2\) and then compute \(\frac{M}{m}\). ### Step-by-Step Solution: 1. **Use the Identity**: We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Therefore, we can express \(\cos^{-1} x\) in terms of \(\sin^{-1} x\): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] 2. **Substitute into the Expression**: Substitute \(\cos^{-1} x\) into the original expression: \[ (\cos^{-1} x)^2 + (\sin^{-1} x)^2 = \left(\frac{\pi}{2} - \sin^{-1} x\right)^2 + (\sin^{-1} x)^2 \] 3. **Expand the Square**: Using the formula \((a - b)^2 = a^2 - 2ab + b^2\): \[ = \left(\frac{\pi^2}{4} - \pi \sin^{-1} x + (\sin^{-1} x)^2\right) + (\sin^{-1} x)^2 \] \[ = \frac{\pi^2}{4} - \pi \sin^{-1} x + 2(\sin^{-1} x)^2 \] 4. **Rearranging the Expression**: Now we have: \[ f(y) = 2y^2 - \pi y + \frac{\pi^2}{4} \] where \(y = \sin^{-1} x\). 5. **Finding the Vertex**: This is a quadratic function in \(y\). The vertex of a quadratic \(ay^2 + by + c\) occurs at: \[ y = -\frac{b}{2a} = \frac{\pi}{4} \] Substitute \(y = \frac{\pi}{4}\) back into the expression to find the minimum value \(m\): \[ f\left(\frac{\pi}{4}\right) = 2\left(\frac{\pi}{4}\right)^2 - \pi\left(\frac{\pi}{4}\right) + \frac{\pi^2}{4} \] \[ = 2 \cdot \frac{\pi^2}{16} - \frac{\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{8} \] 6. **Finding the Maximum Value**: The maximum value occurs at the endpoints of the domain of \(\sin^{-1} x\), which is \([-1, 1]\). Thus, we evaluate \(f(-\frac{\pi}{2})\) and \(f(\frac{\pi}{2})\): - For \(y = -\frac{\pi}{2}\): \[ f\left(-\frac{\pi}{2}\right) = 2\left(-\frac{\pi}{2}\right)^2 - \pi\left(-\frac{\pi}{2}\right) + \frac{\pi^2}{4} \] \[ = 2 \cdot \frac{\pi^2}{4} + \frac{\pi^2}{2} + \frac{\pi^2}{4} = \frac{2\pi^2}{4} + \frac{2\pi^2}{4} = \frac{4\pi^2}{4} = \pi^2 \] - For \(y = \frac{\pi}{2}\): \[ f\left(\frac{\pi}{2}\right) = 2\left(\frac{\pi}{2}\right)^2 - \pi\left(\frac{\pi}{2}\right) + \frac{\pi^2}{4} \] \[ = 2 \cdot \frac{\pi^2}{4} - \frac{\pi^2}{2} + \frac{\pi^2}{4} = \frac{2\pi^2}{4} - \frac{2\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{4} \] The maximum value \(M = \pi^2\). 7. **Calculating \(\frac{M}{m}\)**: \[ \frac{M}{m} = \frac{\pi^2}{\frac{\pi^2}{8}} = 8 \] ### Final Answer: \[ \frac{M}{m} = 8 \]

To solve the problem, we need to find the least value (m) and the greatest value (M) of the expression \((\cos^{-1} x)^2 + (\sin^{-1} x)^2\) and then compute \(\frac{M}{m}\). ### Step-by-Step Solution: 1. **Use the Identity**: We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

the greatest and least values of (sin^(-1)x)^(2)+(cos^(-1)x)^(2)

If M and m are the greatest and least value of the function f(x)=(cos^(-1)x)^2+(sin^(-1)x)^2 then the value of ((M+9m)/m)^3 is …..

If m and M are the minimum and the maximum values of 4+(1)/(2)sin^(2)2x-2cos^(4)x,x in R then

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If m_(1) and m_(2) are the slopes of tangents to x^(2)+y^(2)=4 from the point (3,2), then m_(1)-m_(2) is equal to

AA x in R the greatest and the least values of y=(1)/(2)cos2x+sin x are respectively "