Home
Class 12
MATHS
sec^(2)2x=1-tan2x...

`sec^(2)2x=1-tan2x`

A

`x=(npi)/(2)+(3pi)/(4),ninZ`

B

`x=(npi)/(3),ninZ`

C

`x=(npi)/(2)+(3pi)/(8),ninZ`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C

`sec^(2)2x=1-tan2x`
`1+tan^(2)2x=1-tan2x["becausesec^(2)x-tan^(2)x=1]`
`rArrtan2x(tan2x+1)=0`
`rArrtan2x=0ortan2x=-1`
when tan 2x=0
Then , `2x=npirArrx=(npi)/(2)`
When , tan 2x=-1
Then `tan2x="tan"(pi)/(4)`
`tan2x=tan(pi-(pi)/(4))="tan"(3pi)/(4)`
`tan2x=tan(pi-(pi)/(4))="tan"(3pi)/(4)`
`therefore2x=npi+(3pi)/(4)rArrx=(npi)/(2)+(3pi)/(8),ninZ`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following trigonometric equations, (i) sec^(2)2x=1-"tan"2x

int sec^(2)x-tan^(2)x

Evaluate: int(sec^(2)x)/(1-tan^(2)x)dx

int(sec^(2)x)/(1-tan^(2)x)dx

int(4sec^(2)x tan x)/(sec^(2)x+tan^(2)x)dx=log|1+f(x)|+C

int(1)/(sec^(2)x+2tan^(2)x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

int (tanx sec^(2)x)/((1-tan^(2)x))dx.

int(1)/(sqrt(sec^(2)x+tan^(2)x))dx=

Prove that : 2sec^(2)x-sec^(4)x-2cos ec^(2)x+cos ec^(4)x=(1-tan^(8)x)/(tan^(4)x)