Home
Class 12
MATHS
If x in [-(5pi)/2,(5pi)/2], then the gre...

If `x in [-(5pi)/2,(5pi)/2]`, then the greatest positive solution of `1+sin^4x=cos^2 3x` is -

A

`pi`

B

`2pi`

C

`(5pi)/(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `1=cos^(2)3x=sin^(4)x`
`rArrsin^(2)3x+sin^(4)x=0`
`rArr{3sinx-4sin^(3)x}^(2)+sin^(4)x=0`
`rArrsin^(2)x{(3-4sin^(2)x)^(2)+sin^(2)x}=0`
`thereforesinx=0rArrx=npi`
Hence , greatest positive solution is `2pi`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in[-(5 pi)/(2),(5 pi)/(2)], then the greatest positive solution of 1+sin^(4)x=cos^(2)3x is -

The largest positive solution of 1+"sin"^(4) x = "cos"^(2) 3x " in " [-5pi//2, 5pi//2] , is

If x in(0,1), then greatest root of the equation sin2 pi x=sqrt(2)cos pi x is

At x= (5pi)/(6), the value of 2 sin 3x+ 3 cos 3x is

If [ ] denotes the greatest integer function, lim_(x to(pi)/2)(5 sin [cos x])/([cos x]+2) is

If a=sin\ pi/18 sin\ (5pi)/18 sin\ (7pi)/18, and x is the solution of the equation y=2[x]+2 and y=3[x-2], where [x] denotes the integral part of x then a= (A) [x] (B) 1/[x] (C) 2[x] (D) [x]^2

If f(x)=cos[(1)/(2)pi^(2)]x+sin[(1)/(2)pi^(2)]x,[x] denoting the greatest integer function,then-

If log_(0.5)sin x=1-log_(0.5)cos x, then the number of solutions of x in[-2 pi,2 pi] is